Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Tam giác đều \(ABC\) có độ dài cạnh là \(a,\) ngoại tiếp một đường tròn.
Cho hình quay một vòng xung quanh đường cao \(AH\) của tam giác đó, (xem hình 104), ta được một hình nón ngoại tiếp hình cầu. Tính thể tích phần hình nón bên ngoài hình cầu.
Phương pháp giải - Xem chi tiết
Sử dụng:
- Thể tích hình nón có bán kính đáy \(r\), chiều cao \(h\) là: \(V = \dfrac{1}{3}\pi {r^2}h\).
- Thể tích hình cầu bán kính \(r\) là: \(\displaystyle V ={4 \over 3}\pi {r^3}\).
Lời giải chi tiết
Gọi \(h\) là đường cao của tam giác đều, \(r\) là bán kính của đường tròn nội tiếp tam giác đó.
Trong \(\Delta AHC\) có \(\widehat {AHC} = 90^o; \widehat C = 60^o\).
\(\displaystyle AH = AC.\sin C = a.\sin {60^{^0}} = {{a\sqrt 3 } \over 2}\)
\(\Delta ABC\) đều, tâm của đường tròn nội tiếp là giao điểm của ba đường phân giác đồng thời là giao ba đường trung tuyến, giao ba đường trung trực nên ta có \(O\) là trọng tâm tam giác \(ABC\)
\(\displaystyle r = OH={1 \over 3}AH = {{a\sqrt 3 } \over 6}\)
Thể tích hình nón là:
\(\displaystyle {V_1} = {1 \over 3}\pi .B{H^2}.AH \)\(\,\displaystyle = {1 \over 3}\pi {\left( {{a \over 2}} \right)^2}.{{a\sqrt 3 } \over 2} = {{\pi {a^3}\sqrt 3 } \over {24}}\) (đơn vị thể tích)
Thể tích hình cầu là:
\(\displaystyle {V_2} = {4 \over 3}\pi {r^3} = {4 \over 3}\pi .{\left( {{{a\sqrt 3 } \over 6}} \right)^3} \)\(\,\displaystyle = {4 \over 3}\pi .{{3{a^3}\sqrt 3 } \over {216}} = {{\pi {a^3}\sqrt 3 } \over {54}}\) (đơn vị thể tích).
Phần thể tích hình nón nằm ngoài hình cầu là:
\(V=V_1-V_2=\displaystyle {{\pi {a^3}\sqrt 3 } \over {24}} - {{\pi {a^3}\sqrt 3 } \over {54}} \)\(\,\displaystyle = {{9\pi {a^3}\sqrt 3 - 4\pi {a^3}\sqrt 3 } \over {216}} = {{5\pi {a^3}\sqrt 3 } \over {216}}\) (đơn vị thể tích)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 9
Bài 6
SỰ PHÂN HÓA LÃNH THỔ
Bài 5
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 1