Bài III.1 phần bài tập bổ sung trang 114 SBT toán 9 tập 2

Đề bài

Cho tam giác đều \(ACB\) và \(ACD,\) cạnh \(a.\) Lần lượt lấy \(B\) và \(D\) làm tâm vẽ hai đường tròn bán kính \(a.\) Kẻ các đường kính \(ABE\) và \(ADF.\) Trên cung nhỏ \(CE\) của đường tròn tâm \(B\) lấy điểm \(M\) (không trùng với \(E\) và \(C\)). Đường thẳng \(CM\) cắt đường tròn tâm \(D\) tại điểm thứ hai là \(N.\) Hai đường thẳng \(EM\) và \(NF\) cắt nhau tại điểm \(T.\) Gọi \(H\) là giao điểm của \(AT\) và \(MN.\) Chứng minh:

\(a)\) \(MNT\) là tam giác đều.

\(b)\) \(AT = 4AH.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một đường tròn, số đo góc nội tiếp bằng nửa số đo của góc ở tâm chắn cùng chắn một cung.

+) Góc nội tiếp chắn nửa đường tròn là góc vuông.

+) Sử dụng tính chất đường trung trực: Điểm cách đều hai đầu mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

Lời giải chi tiết

\(a)\) Trong đường tròn \((B)\) ta có: 

\(\widehat {AMC} = \displaystyle {1 \over 2}\widehat {ABC}\) (hệ quả góc nội tiếp) mà \(\widehat {ABC} = 60^\circ \) (vì \(∆ABC\) đều)

\( \Rightarrow \widehat {AMC} = 30^\circ \)

\(\widehat {AME} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn \((B)\))

\( \Rightarrow \widehat {AMT} = 90^\circ \)

\(\widehat {TMN} = \widehat {AMT} - \widehat {AMC}\)\( = 90^\circ  - 30^\circ  = 60^\circ \)

Trong đường tròn \((D)\) ta có:

\(\widehat {ANC} =\displaystyle{1 \over 2}\widehat {ADC}\) (Hệ quả góc nội tiếp) mà \(\widehat {ADC} = 60^\circ \) (vì \(∆ADC\) đều) \( \Rightarrow \widehat {ANC} = 30^\circ \)

\(\widehat {ANF} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn \((D)\))

\( \Rightarrow \widehat {ANC} + \widehat {CNF} = 90^\circ\)

\(  \Rightarrow \widehat {CNF} = 90^\circ  - \widehat {ANC}\)\( = 90^\circ  - 30^\circ  = 60^\circ \) hay \(\widehat {MNT} = 60^\circ \)

Vậy \(∆TMN\) đều.

\(b)\) \(\widehat {AMC} = \widehat {ANC} = 30^\circ \) (theo câu a)

\( \Rightarrow \Delta AMN\) cân tại \(A\) \( \Rightarrow  AM = AN\) nên \(A\) nằm trên đường trung trực \(MN\)

Vì \(∆TMN\) đều \( \Rightarrow TM = TN\) nên \(T\) nằm trên đường trung trực \(MN\)

Suy ra \(AT\) là đường trung trực của \(MN\) nên \(AT ⊥ MN\)

\(∆AHM\) có \(\widehat {AHM} = 90^\circ \)

\(AM =\displaystyle{{AH} \over {\sin M}} = {{AH} \over {\sin 30^\circ }}\)\( =\displaystyle {{AH} \over {\displaystyle{1 \over 2}}} = 2AH\)     \(         (1)\)

Vì  \(∆TMN\) đều có \(TH ⊥ MN\) nên \(TH\) cũng là đường phân giác của \(\widehat T\) nên \(\widehat {MTA} = 30^\circ \)

\(∆AMT\) có \(\widehat {AMT} = 90^\circ \)

 

\(AT = \displaystyle{{AM} \over {\sin \widehat {MTA}}} = {\displaystyle{AM} \over {\displaystyle{1 \over 2}}} = 2AM\)\(\;  (2)\)

Từ \((1)\) và \((2)\) suy ra: \(AT =2AM=2.2AH= 4AH\)

Vậy \(AT=4AH.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi