Đề bài
Cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 4 + t\\y = - 1 + 2t\end{array} \right.\) và điểm A(2 ; 1). Hai điểm M, N nằm trên ∆.
a) Tìm toạ độ điểm M sao cho AM = \(\sqrt {17} \)
b) Tìm toạ độ điểm N sao cho đoạn thẳng AN ngắn nhất
Phương pháp giải - Xem chi tiết
Bước 1: Tham số hóa điểm M và N theo PT tham số ∆
Bước 2: Sử dụng công thức khoảng cách để lập biểu thức độ dài AM và AN
Bước 3: Giải PT để tìm tọa độ điểm M và đánh giá biểu thức độ dài AN để tìm điểm N thỏa mãn giả thiết
Lời giải chi tiết
Do \(M,N \in \Delta \) nên \(M(4 + t; - 1 + 2t)\) và \(N(4 + k; - 1 + 2k)\)
a) Ta có: \(\overrightarrow {AM} = (t + 2;2t - 2)\)
Theo giả thiết, AM = \(\sqrt {17} \) \( \Rightarrow A{M^2} = 17 \Leftrightarrow {(t + 2)^2} + {(2t - 2)^2} = 17\)\( \Leftrightarrow 5{t^2} - 4t - 9 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = \frac{9}{5}\end{array} \right.\)
Với t = -1 thì \(M(3; - 3)\)
Với \(t = \frac{9}{5}\) thì \(M\left( {\frac{{29}}{5};\frac{{13}}{5}} \right)\)
Vậy có 2 điểm M thỏa mãn là \(M(3; - 3)\) và \(M\left( {\frac{{29}}{5};\frac{{13}}{5}} \right)\)
b) Ta có: \(\overrightarrow {AN} = (k + 2;2k - 2)\)
\(AN = \sqrt {{{\left( {k + 2} \right)}^2} + {{(2k - 2)}^2}} \)\( \Leftrightarrow A{N^2} = {\left( {k + 2} \right)^2} + {(2k - 2)^2} \Leftrightarrow A{N^2} = 5{k^2} - 4k + 8\)
AN nhỏ nhất \( \Leftrightarrow A{N^2} = 5{k^2} - 4k + 8\) nhỏ nhất
Ta có: \(5{k^2} - 4k + 8 = 5{\left( {k - \frac{2}{5}} \right)^2} + \frac{{44}}{5}\)\( \Rightarrow A{N^2} \ge \frac{{44}}{5} \Rightarrow AN \ge \frac{{2\sqrt {55} }}{5}\)
Dấu “=” xảy ra khi và chỉ khi \(k = \frac{2}{5}\) \( \Rightarrow N\left( {\frac{{22}}{5}; - \frac{1}{5}} \right)\)
CHƯƠNG II. BẢNG TUẦN HOÀN CÁC NGUYÊN TỐ HÓA HỌC VÀ ĐỊNH LUẬT TUẦN HOÀN
Chủ đề 7. Hệ thống chính trị nước Cộng hòa xã hội chủ nghĩa Việt Nam
Đề thi học kì 1
Unit 2: Science and inventions
Đề kiểm tra 15 phút học kì I
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10