PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 31 trang 83 SBT toán 8 tập 1

Đề bài

Hình thang cân \(ABCD\) có \(O\) là giao điểm của hai đường thẳng chứa cạnh bên \(AD,\) \(BC\) và \(E\) là giao điểm của hai đường chéo. Chứng minh rằng \(OE\) là đường trung trực của hai đáy.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong hình thang cân, hai cạnh bên bằng nhau.

+) Trong hình thang cân, hai đường chéo bằng nhau.

+) Trong tam giác cân, đường trung trực ứng với cạnh đáy đi qua đỉnh của tam giác đó.

Lời giải chi tiết

 

Vì ABCD là hình thang cân nên: 

\(\eqalign{
& \widehat {ADC} = \widehat {BCD} \cr 
& \Rightarrow \widehat {ODC} = \widehat {OCD} \cr} \) 

\(⇒ ∆ OCD\) cân tại \(O\)

\(⇒ OC = OD\)

\(⇒ OA + AD = OB + BC\)

Mà \(AD = BC\) (tính chất hình thang cân)

\(⇒ OA = OB\)

Xét \(∆ ADC\) và \(∆ BCD :\)

\(AD = BC\) (chứng minh trên)

\(AC = BD\) (tính chất hình thang cân)

\(CD\) cạnh chung

Do đó: \(∆ ADC = ∆ BCD\;\;\; (c.c.c)\)

\( \Rightarrow {\widehat D_1} = {\widehat C_1}\)

\(⇒ ∆ EDC\) cân tại \(E\)

\(⇒ EC = ED\) nên \(E\) thuộc đường trung trực của \(CD\)

\(OC = OD\) nên \(O\) thuộc đường trung trực của \(CD\)

\(E≢ O.\) Vậy \(OE\) là đường trung trực của \(CD.\)

\(BD = AC\) (tính chất hình thang cân)

\(⇒ EB + ED = EA + EC\) mà \(ED = EC\)  (chứng minh trên)

\(⇒ EB = EA\) \(\Rightarrow \Delta EAB\) cân tại \(E\)

nên \(E\) thuộc đường trung trực \(AB\)

\( OA = OB\) ( chứng minh trên) \(\Rightarrow \Delta OAB\) cân tại \(O\)

nên \(O\) thuộc đường trung trực \(AB\)

\(E≢ O.\) Vậy \(OE\) là đường trung trực của \(AB.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved