Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Một đoạn thẳng \(AB\) không vuông góc với mặt phẳng \(\left( \alpha \right)\) cắt mặt phẳng này tại trung điểm \(O\) của đoạn thẳng đó. Các đường thẳng vuông góc với \(\left( \alpha \right)\) qua \(A\) và \(B\) lần lượt cắt mặt phẳng \(\left( \alpha \right)\) tại \(A’\) và \(B’\). Chứng minh ba điểm \(A’, O, B’\) thẳng hàng và \(AA’ = BB’\).
Phương pháp giải - Xem chi tiết
- Chứng minh ba điểm \(O,A',B'\) cùng thuộc giao tuyến của \((AA’, BB’) \) với \(\left( \alpha \right)\).
- Chứng minh hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn.
Lời giải chi tiết
\(\left\{ \matrix{
AA' \bot \left( \alpha \right) \hfill \cr
BB' \bot \left( \alpha \right) \hfill \cr} \right. \Rightarrow AA'\parallel BB'\)
Mặt phẳng \((AA’, BB’) \) xác định bởi hai đường thẳng song song \((AA’, BB’) \) cắt mặt phẳng \(\left( \alpha \right)\) theo giao tuyến qua \(O, A’, B’.\)
Do đó ba điểm \(O, A’, B’ \) thẳng hàng.
Hai tam giác vuông \(OAA’ \) và \(OBB’ \) bằng nhau vì có một cạnh huyền và một góc nhọn bằng nhau nên từ đó ta suy ra \(AA’ = BB’\).
Chương 1: Dao động
Unit 10: Cities of the Future
Bài 4. Thực hành: Tìm hiểu những cơ hội và thách thức của toàn cầu hóa đối với các nước đang phát triển - Tập bản đồ Địa lí 11
CHƯƠNG IV- TỪ TRƯỜNG
Chuyên đề 1: Phân bón
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11