Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 - 7n.\)
LG a
Khảo sát tính tăng, giảm của dãy số
Phương pháp giải:
Xét hiệu \({u_{n + 1}} - {u_n}\) suy ra kết luận.
Lời giải chi tiết:
Xét hiệu \(H = {u_{n + 1}} - {u_n}\)\( = 1 - 7\left( {n + 1} \right) - \left( {1 - 7n} \right)\) \(=1-7n-7-1+7n = - 7 < 0\)
Do đó \(u_{n+1} < u_n,\forall n\in N^*\)
Vậy dãy số giảm.
LG b
Chứng minh dãy số trên là cấp số cộng. Lập công thức truy hồi của dãy số
Phương pháp giải:
Sử dụng định nghĩa cấp số cộng \({u_{n + 1}} = {u_n} + d\) là cấp số cộng có công sai \(d\).
Lời giải chi tiết:
Do \({u_{n + 1}} - {u_n} = - 7 \Rightarrow {u_{n + 1}} = {u_n} + \left( { - 7} \right)\) nên dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với:
\({u_1} =1-7.1= - 6;d = - 7.\)
Công thức truy hồi là \(\left\{ \begin{array}{l}{u_1} = - 6\\{u_{n + 1}} = {u_n} - 7\text{ với }n \ge 1\end{array} \right.\) .
LG c
Tính tổng 100 số hạng đầu của dãy số.
Phương pháp giải:
Sử dụng công thức tính tổng \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)
Lời giải chi tiết:
\({S_{100}} = \dfrac{{{u_1}\left( {2{u_1} + 99d} \right)}}{2}\) \( = \dfrac{{ - 6\left[ {2.\left( { - 6} \right) + 99.\left( { - 7} \right)} \right]}}{2} = - 35250\)
Chương 9. Anđehit - Xeton - Axit Cacboxylic
SBT Toán 11 - Cánh Diều tập 2
Chuyên đề 1. Trường hấp dẫn
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
Phần hai. Địa lí khu vực và quốc gia
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11