SBT Toán 8 - Kết nối tri thức với cuộc sống tập 1

Câu hỏi 3.18 - Mục Bài tập trang 37

1. Nội dung câu hỏi

Cho hình bình hành ABCD. Lấy các điểm E thuộc AB, F thuộc CD sao cho \(AE = CF\); lấy các điểm G thuộc BC, H thuộc AD sao cho \(BG = DH.\) Chứng minh EGFH là một hình bình hành và các đường thẳng AC, BD, EF, GH đồng quy.

 

2. Phương pháp giải

Sử dụng kiến thức về tính chất hình bình hành để chứng minh: Hình bình hành có:

+ Các cạnh đối bằng nhau và song song.

+ Các góc đối bằng nhau.

+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường.

 

3. Lời giải chi tiết

Vì ABCD là hình bình hành nên \(AB = CD,AD = BC,\) \(\widehat {ABC} = \widehat {ADC},\widehat {DAB} = \widehat {DCB}\)

Vì \(AB = CD\), \(AE = CF\) nên \(AB - AE = CD - FC\), suy ra \(EB = DF\)

Vì \(AD = BC\), \(DH = BG\) nên \(AD - DH = BC - BG\), suy ra \(AH = CG\)

Tam giác HEA và tam giác GCF có:

\(AE = CF\left( {gt} \right),\widehat {HAE} = \widehat {GCF}\left( {cmt} \right),AH = CG\left( {cmt} \right)\)

Do đó, \(\Delta HAE = \Delta GCF\left( {c - g - c} \right)\), suy ra \(HE = FG\)

Tam giác EBG và tam giác FDH có:

\(BG = DH\left( {gt} \right),\widehat {EBG} = \widehat {HDF}\left( {cmt} \right),EB = DF\left( {cmt} \right)\)

Do đó, \(\Delta EBG = \Delta FDH\left( {c - g - c} \right)\), suy ra \(GE = FH\)

Tứ giác EGFH có: \(HE = FG\), \(GE = FH\) nên EGFH là một hình bình hành.

Gọi O là trung điểm của AC.

Vì ABCD là hình bình hành nên hai đường chéo AC, BD cắt nhau tại O và O là trung điểm của BD (1).

Tứ giác EBFD có: EB//DF, \(EB = DF\)  nên tứ giác EBDF là hình bình hành. Do đó, hai đường chéo EF và BD cắt nhau tại trung điểm O của BD (2).

Vì tứ giác EGFH là hình bình hành nên hai đường chéo EF và GH cắt nhau tại trung điểm O của EF (3).

Từ (1), (2) và (3) ta có: Các đường thẳng AC, BD, EF, GH đồng quy tại O.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved