PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 3.2 phần bài tập bổ sung trang 103 SBT toán 9 tập 2

Đề bài

Cho nửa đường tròn đường kính \(AB,\) tâm \(O.\) Đường tròn tâm \(A\) bán kính \(AO\) cắt nửa đường tròn đã cho tại \(C.\) Đường tròn tâm \(B\) bán kính \(BO\) cắt nửa đường tròn đã cho tại \(D.\) Đường thẳng qua \(O\) và song song với \(AD\) cắt nửa đường tròn đã cho tại \(E.\)

\(a)\) \(\widehat {ADC}\) và \(\widehat {ABC}\) có bằng nhau không\(?\) Vì sao\(?\)

\(b)\) Chứng minh \(CD\) song song với \(AB.\)

\(c)\) Chứng minh \(AD\) vuông góc với \(OC\)

\(d)\) Tính số đo của \(\widehat {DAO}\).

\(e)\) So sánh hai cung \(BE\) và \(CD.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một đường tròn, các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.

+) Trong một đường tròn, góc nội tiếp chắn nửa đường tròn là góc vuông.

+) Tứ giác có bốn cạnh bằng nhau là hình thoi.

+) Trong hình thoi, hai đường chéo vuông góc.

+) Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.

Lời giải chi tiết

 

\(a)\) Trong đường tròn \((O)\) ta có:

\(\widehat {ADC} = \widehat {ABC}\)  (\(2\) góc nội tiếp cùng chắn cung \(\overparen{AC}\))

\(b)\) \(∆ACB\) nội tiếp trong đường tròn \((O)\) có \(AB\) là đường kính nên \(∆ABC\) vuông tại \(C\)

\( \Rightarrow CO = OA = \displaystyle{1 \over 2}AB\) (tính chất tam giác vuông)

Mà \(AC = AO\)  (bán kính đường tròn \((A)\))

Suy ra: \(AC = AO = OC\)

\( \Rightarrow \)\( ∆ACO\) đều \( \Rightarrow \widehat {AOC} = {60^o}\)

Ta có: \(∆ADB\) nội tiếp trong đường tròn đường kính \(AB\) nên \(∆ADB\) vuông tại \(D\)

\( \Rightarrow DO = OB = OA = \displaystyle {1 \over 2}AB\) (tính chất tam giác vuông)

\(BD = BO\) (bán kính đường tròn \((B)\))

Suy ra: \(BO = OD = BD\)

\( \Rightarrow \) \(∆BOD\) đều

\( \Rightarrow \widehat {ODB} = \widehat {BOD} = {60^o}\)

Mà \(\widehat {AOC} + \widehat {COD} + \widehat {BOD} = {180^o}\)

Suy ra: \(\widehat {COD} = {60^o}\)

Kết hợp với: \(OC = OD\)  (vì cùng bằng \(\displaystyle {1 \over 2}AB\))

Suy ra: \(∆COD\) đều

\( \Rightarrow \widehat {ODC} = {60^o} \Rightarrow \widehat {ODC} = \widehat {BOD}\)

\( \Rightarrow \) \(CD // AB\) (vì có cặp góc ở vị trí so le trong bằng nhau)

\(c)\) Ta có: \(∆AOC\) đều (chứng minh trên) \( \Rightarrow OA = AC = OC\)

\(∆OCD\) đều (chứng minh trên)  \( \Rightarrow OC = OD = CD\)

Suy ra: \(AC = AO = OD = DC\)

Vậy: tứ giác \(AODC\) là hình thoi. Suy ra \( AD \bot OC.\)

\(d)\) \(∆BOD\) đều (chứng minh trên) \( \Rightarrow \widehat {OBD} = {60^o}\) hay \(\widehat {ABD} = {60^o}\)

Vì \(∆ADB\) vuông tại \(D\)

\( \Rightarrow \widehat {DAB} + \widehat {ABD} = {90^o}\)

\( \Rightarrow \widehat {DAB} = {90^o} - \widehat {ABD} \)\(= {90^o} - {60^o} = {30^o}\)

 

Vậy \(\widehat {DAO} = {30^o}\)

\(e)\) \(OE // AD\;\; (gt)\)

\( \Rightarrow \widehat {EOB} = \widehat {DAO} = {30^o}\) (hai góc đồng vị)

\( sđ \overparen{BE}\) \( = \widehat {EOB} = {30^0}\)

\( sđ \overparen{CD}\) \( = \widehat {COD}\)

mà \(\widehat {COD} = {60^o}\) (chứng minh trên)

\(  sđ \overparen{CD} = 60^o\)

Suy ra: Số đo cung \(\overparen{CD}\) gấp đôi số đo cung \(\overparen{BE}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved