PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

Bài 32 trang 10 SBT toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho phương trình \(\left( {3x + 2k - 5} \right)\left( {x - 3k + 1} \right) = 0\), trong đó \(k\) là một số.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tìm các giá trị của \(k\) sao cho một trong các nghiệm của phương trình là \(x = 1\).

Phương pháp giải:

- Thay \(x=1\) vào phương trình đã cho rồi giải phương trình ẩn \(k\) để tìm \(k\).

Lời giải chi tiết:

Thay \(x = 1\) vào phương trình \(\left( {3x + 2k - 5} \right)\left( {x - 3k + 1} \right) = 0\), ta có:

\(\eqalign{  & \left( {3.1 + 2k - 5} \right)\left( {1 - 3k + 1} \right) = 0  \cr  &  \Leftrightarrow \left( {2k - 2} \right)\left( {2 - 3k} \right) = 0 \cr} \)

\( \Leftrightarrow 2k - 2 = 0\) hoặc \(2 - 3k = 0\)

+) Với  \(2k - 2 = 0 \Leftrightarrow 2k=2 \Leftrightarrow k = 1\)

+) Với  \(\displaystyle 2 - 3k = 0 \Leftrightarrow 3k=2 \Leftrightarrow k = {2 \over 3}\)

Vậy với \(k = 1\) hoặc \(k = \dfrac{2}{3}\)  thì phương tình đã cho có nghiệm \(x = 1.\)

LG b

Với mỗi giá trị của \(k\) vừa tìm được ở câu a, hãy giải phương trình đã cho.

Phương pháp giải:

Thay giá trị của \(k\) tìm được ở câu a) vào phương trình đã cho rồi giải phương trình ẩn \(x\) để tìm \(x\).

*) Áp dụng phương pháp giải phương trình tích : 

\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

Với \(k = 1\), ta có phương trình :

\((3x + 2.1 – 5)(x – 3.1 + 1) = 0\)

\(\Leftrightarrow \left( {3x - 3} \right)\left( {x - 2} \right) = 0\)

\( \Leftrightarrow 3x - 3 = 0\) hoặc \(x - 2 = 0\)

+) Với  \(3x - 3 = 0 \Leftrightarrow 3x=3 \Leftrightarrow x = 1\)

+) Với  \(x - 2 = 0 \Leftrightarrow x = 2\)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \{1;2\}.\)

Với  \(\displaystyle k = {2 \over 3}\), ta có phương trình :

\(\displaystyle \Leftrightarrow (3x + 2. {2 \over 3}– 5)(x – 3.{2 \over 3} + 1) = 0\)

\(\displaystyle \left( {3x - {{11} \over 3}} \right)\left( {x - 1} \right) = 0\)

\( \displaystyle \Leftrightarrow 3x - {{11} \over 3} = 0\) hoặc \(x - 1 = 0\)

+) Với  \(\displaystyle 3x - {{11} \over 3} = 0 \Leftrightarrow 3x={{11} \over 3}\)\(\displaystyle \Leftrightarrow x = {{11} \over 9}\)

+) Với  \(x - 1 = 0 \Leftrightarrow x = 1\) 

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ \dfrac{11}{9};\,1 \right \}.\) 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved