Đề bài
Cho ba điểm A(-2 ; 2), B(7 ; 5), C(4 ; – 5) và đường thẳng ∆: 2x + y – 4 = 0
a) Tìm toạ độ điểm M thuộc ∆ và cách đều hai điểm A và B
b*) Tìm toạ độ điểm N thuộc ∆ sao cho |\(\overrightarrow {NA} + \overrightarrow {NB} + \overrightarrow {NC} \)| có giá trị nhỏ nhất.
Phương pháp giải - Xem chi tiết
Bước 1: Tham số hóa điểm M và N theo PT tổng quát ∆
Bước 2: Sử dụng công thức khoảng cách để lập PT AM = BM
Bước 3: Giải PT để tìm tọa độ điểm M
Bước 4: Tìm tọa độ điểm I thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} = \overrightarrow 0 \)
Bước 5: Biến đổi và tìm GTNN của biểu thức |\(\overrightarrow {NA} + \overrightarrow {NB} + \overrightarrow {NC} \)| để tìm điểm N thỏa mãn giả thiết
Lời giải chi tiết
a) Gọi \(M(t;4 - 2t) \in \Delta \)
Ta có: \(\overrightarrow {AM} = (t + 2; - 2t + 2)\), \(\overrightarrow {BM} = (t - 7; - 2t - 1)\)
Theo giả thiết, M cách đều hai điểm A và B \( \Rightarrow AM = BM \Leftrightarrow A{M^2} = B{M^2}\)
\( \Leftrightarrow {(t + 2)^2} + {( - 2t + 2)^2} = {(t - 7)^2} + {( - 2t - 1)^2}\)
\( \Leftrightarrow - 4t + 8 = - 10t + 50 \Leftrightarrow 6t = 42 \Leftrightarrow t = 7\)
Vậy M(7 ; -10)
b*) Ta có: \(\overrightarrow {AB} = (9;3),\overrightarrow {AC} = (6; - 7)\)
Vì \(\frac{9}{6} \ne \frac{3}{{ - 7}}\) nên \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương \( \Rightarrow A,B,C\) không thẳng hàng
Gọi G là trọng tâm ∆ABC \( \Rightarrow G\left( {3;\frac{2}{3}} \right)\) và \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
Xét \(\left| {\overrightarrow {NA} + \overrightarrow {NB} + \overrightarrow {NC} } \right| = \left| {\overrightarrow {NG} + \overrightarrow {GA} + \overrightarrow {NG} + \overrightarrow {GB} + \overrightarrow {NG} + \overrightarrow {GC} } \right|\)\( = \left| {3\overrightarrow {NG} } \right| = 3NG\)
\(\left| {\overrightarrow {NA} + \overrightarrow {NB} + \overrightarrow {NC} } \right|\) nhỏ nhất khi và chỉ khi NG nhỏ nhất \( \Leftrightarrow \) N là hình chiếu của G trên ∆
Gọi d là đường thẳng đi qua G, vuông góc với ∆
∆ có VTPT \(\overrightarrow n = (2;1)\) \( \Rightarrow \) ∆ có một VTCP là \(\overrightarrow u = (1; - 2)\)
Do \(d \bot \Delta \) nên d nhận \(\overrightarrow u = (1; - 2)\)làm VTPT \( \Rightarrow \) d có PT: 3x – 6y – 5 = 0
N là giao điểm của d và ∆ \( \Rightarrow \) tọa độ điểm N là nghiệm của hệ PT: \(\left\{ \begin{array}{l}2x + y - 4 = 0\\3x - 6y - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{29}}{{15}}\\y = \frac{2}{{15}}\end{array} \right.\)
Vậy \(N\left( {\frac{{29}}{{15}};\frac{2}{{15}}} \right)\)
Chủ đề 3: Tư duy phản biện và tư duy tích cực
Chương 5. Moment lực. Điều kiện cân bằng
Đề thi học kì 2
Chương 1. Mở đầu
Chương III. Động lực học
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10