Đề bài
Viết phương trình của mặt phẳng \((\beta )\) đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\): 2x – y + 3z + 4 = 0.
Phương pháp giải - Xem chi tiết
Mặt phẳng \((\beta )\) song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\) nên \(\overrightarrow {{n_\beta }} = \left[ {\overrightarrow j ,\overrightarrow {{n_\alpha }} } \right]\)
Lời giải chi tiết
Trục Oy có VTCP \(\overrightarrow j = (0;1;0)\)
Mặt phẳng \((\alpha ): 2x – y + 3z + 4 = 0\) có VTPT \(\overrightarrow {{n_\alpha }} = (2; - 1;3)\)
Mặt phẳng \((\beta )\) song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\)
\( \Rightarrow \left\{ \begin{array}{l}
\overrightarrow {{n_\beta }} \bot \overrightarrow {{n_\alpha }} \\
\overrightarrow {{n_\beta }} \bot \overrightarrow j
\end{array} \right. \Rightarrow \overrightarrow {{n_\beta }} = \left[ {\overrightarrow j ;\overrightarrow {{n_\alpha }} } \right]\)
Suy ra \((\beta )\) có vecto pháp tuyến là \(\overrightarrow {{n_\beta }} = \left[ {\overrightarrow j ;\overrightarrow {{n_\alpha }} } \right] = (3;0; - 2)\)
Mặt phẳng \((\beta )\) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: \(\overrightarrow {{n_\beta }} = (3;0; - 2)\)
Vậy phương trình của \((\beta )\) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0.
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 12
Bài 4. Quyền bình đẳng của công dân trong một số lĩnh vực đời sống
Bài 10. Thiên nhiên nhiệt đới ẩm gió mùa (tiếp theo)
CHƯƠNG IV. DAO ĐỘNG VÀ SÓNG ĐIỆN TỪ
Chương 10. Hệ sinh thái, sinh quyển và bảo vệ môi trường