Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Với giá trị nào của \(m\) thì phương trình có hai nghiệm phân biệt:
LG a
LG a
\({x^2} - 2\left( {m + 3} \right)x + {m^2} + 3 = 0\)
Phương pháp giải:
Phương trình \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt khi và chỉ khi \(a \ne 0\) và \(\Delta ' = b{'^2} - ac>0\).
Lời giải chi tiết:
Phương trình \({x^2} - 2\left( {m + 3} \right)x + {m^2} + 3 = 0\) có hai nghiệm phân biệt khi và chỉ khi \(\Delta ' > 0\)
\(\eqalign{
& \Delta ' = {\left[ { - \left( {m + 3} \right)} \right]^2} - 1\left( {{m^2} + 3} \right) \cr
& = {m^2} + 6m + 9 - {m^2} - 3 = 6m + 6 \cr
& \Delta ' > 0 \Leftrightarrow 6m + 6 > 0 \cr&\Leftrightarrow 6m > - 6 \Leftrightarrow m > - 1 \cr} \)
Vậy \(m > -1\) thì phương trình đã cho có hai nghiệm phân biệt.
LG b
LG b
\(\left( {m + 1} \right){x^2} + 4mx + 4m - 1 = 0\)
Phương pháp giải:
Phương trình \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt khi và chỉ khi \(a \ne 0\) và \(\Delta ' = b{'^2} - ac>0\).
Lời giải chi tiết:
Phương trình \(\left( {m + 1} \right){x^2} + 4mx + 4m - 1 = 0\) có hai nghiệm phân biệt khi và chỉ khi \(m + 1 ≠ 0\) và \(\Delta ' > 0\)
\( m + 1 \ne 0 \Leftrightarrow m \ne - 1\)
\( \Delta ' = {\left( {2m} \right)^2} - \left( {m + 1} \right)\left( {4m - 1} \right) \)
\( = 4{m^2} - 4{m^2} + m - 4m + 1 \)
\(= 1 - 3m \)
\( \Delta ' > 0 \Leftrightarrow 1 - 3m > 0 \Leftrightarrow 3m < 1\)\(\, \displaystyle\Leftrightarrow m < {1 \over 3} \)
Vậy \(\displaystyle m < {1 \over 3}\) và \(m ≠ -1\) thì phương trình đã cho có hai nghiệm phân biệt.
Bài 2
Tải 20 đề kiểm tra 1 tiết học kì 1 Văn 9
Tải 10 đề thi giữa kì 2 Văn 9
Bài 28. Vùng Tây Nguyên
Tải 10 đề ôn tập học kì 2 Văn 9