PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 1

Bài 33 trang 79 Vở bài tập toán 9 tập 1

Đề bài

a) Vẽ đồ thị các hàm số sau trên cùng một mặt phẳng tọa độ:

y = 2x              (1)

y = 0,5x           (2)

y = -x + 6        (3)

b) Gọi các giao điểm của đường thẳng có phương trình (3) với hai đường thẳng có phương trình (1) và (2) theo thứ tự là A và B. Tìm tọa độ của hai điểm A và B.

c) Tính các góc của tam giác OAB.

Phương pháp giải - Xem chi tiết

a) Cách vẽ đường thẳng y = ax + b (trường hợp \(a \ne 0\) và \(b \ne 0\))

- Cho x = 0 thì y = b, được điểm P(0 ; b) thuộc trục tung Oy.

- Cho y = 0 thì \(x =  - \dfrac{b}{a}\), được điểm \(Q\left( { - \dfrac{b}{a};0} \right)\) thuộc trục hoành Ox.

- Vẽ đường thẳng đi qua hai điểm P và Q.

b) Tìm hoành độ giao điểm rồi thay vào một trong hai hàm số để tìm giá trị của tung độ giao điểm.

c)

-  Chứng minh tam giác đã cho là tam giác cân.

- Tìm độ lớn của góc ở đỉnh.

- Tìm độ lớn hai góc kề cạnh đáy.

Lời giải chi tiết

a) Vẽ đồ thị:

- Đường thẳng \(y = 2x\left( 1 \right)\) đi qua gốc tọa độ O và điểm \(C\left( {1;2} \right)\)

- Đường thẳng \(y = 0,5x{\rm{  }}\left( 2 \right)\)  đi qua gốc tọa độ O và điểm \(D\left( {1;0,5} \right)\)

- Đường thẳng \(y =  - x + 6{\rm{ (3)}}\) đi qua hai điểm : \(E\left( {0;6} \right)\) và điểm \(F\left( {6;0} \right)\)

 

b) Tìm tọa độ của điểm A :

\( - x + 6 = 2x \Leftrightarrow x = 2\)

Thay \(x = 2\) vào phương trình \(y = 2x\) ta có \(y = 2.2 = 4\)

Vậy ta có điểm \(A\left( {2;4} \right)\).

- Tìm tọa độ của điểm B :

\( - x + 6 = 0,5x \Leftrightarrow x = 4\)

Thay \(x = 4\) vào phương trình \(y = 0,5x\) ta có :

\(y = 0,5.4 = 2\)

Vậy ta có điểm \(B\left( {4;2} \right)\) 

c) Chứng minh: \(OA = OB\)

\(OA = \sqrt {{4^2} + {2^2}}  = \sqrt {20} \) ; \(OB = \sqrt {{4^2} + {2^2}}  = \sqrt {20} \)

Vậy \(OA = OB \Rightarrow \Delta OAB\) là tam giác cân \( \Rightarrow \widehat {OAB} = \widehat {OBA}\)

Tính góc \(\widehat {AOF}\) : \(\tan \widehat {AOF} = 2 \Rightarrow \widehat {AOF} \approx {63^o}26'\)

Tính góc \(\widehat {BOF}\) : \(\tan \widehat {BOF} = 0,5 \Rightarrow \widehat {BOF} \approx {26^o}34'\)

Vậy \(\widehat {AOB} = \widehat {AOF} - \widehat {BOF}\)\( \approx {63^o}26' - {26^o}34' = {36^o}52'\)

\(\widehat {OAB} = \widehat {OBA}\)\( \approx \dfrac{{{{180}^o} - {{36}^o}52'}}{2} = {71^o}34'.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved