Đề bài
Tam giác \(ABC\) có \(\widehat A = {45^ \circ },\,\,c = 6,\,\,\widehat B = {75^ \circ }.\)
Độ dài đường cao \({h_b}\) bằng:
A. \(3\sqrt 2 .\)
B. \(\frac{3}{{\sqrt 2 }}.\)
C. \(6\sqrt 2 .\)
D. \(2\sqrt 3 .\)
Phương pháp giải - Xem chi tiết
- Tính góc C của \(\Delta ABC\)
- Áp dụng định lý sin để tính cạnh b: \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
- Tính diện tích \(\Delta ABC = \frac{1}{2}bc.\sin A\)
- Tính \({h_b} = \frac{{2{S_{\Delta ABC}}}}{b}\)
Lời giải chi tiết
Ta có: \(\widehat A + \widehat B + \widehat C = {180^ \circ }\,\, \Rightarrow \,\,\widehat C = {180^ \circ } - \widehat A - \widehat B = {60^ \circ }\)
Áp dụng định lý sin trong \(\Delta ABC\) ta có:
\(\begin{array}{l}\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\\ \Rightarrow \,\,b = \frac{{c.\sin B}}{{\sin C}} = \frac{{6.\sin {{75}^ \circ }}}{{\sin {{45}^ \circ }}} = 3 + 3\sqrt 3 \,\,\left( {dvdd} \right)\end{array}\)
Diện tích \(\Delta ABC\) là:
\({S_{\Delta ABC}} = \frac{1}{2}bc.\sin A = \frac{1}{2}.\left( {3 + 3\sqrt 3 } \right).6.\sin {45^ \circ } = \frac{{9\sqrt 6 + 9\sqrt 2 }}{2}\,\,\left( {dvdt} \right)\)
Ta có: \({S_{\Delta ABC}} = \frac{1}{2}{h_b}.b\,\, \Rightarrow \,\,{h_b} = \frac{{2{S_{\Delta ABC}}}}{b} \approx \frac{{2.\frac{{9\sqrt 6 + 9\sqrt 2 }}{2}}}{{3 + 3\sqrt 3 }} = 3\sqrt 2 \,\,\left( {dvdd} \right)\)
Chọn A.
Soạn Văn 10 Chân trời sáng tạo tập 1 - chi tiết
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 10
Chủ đề 6. Một số nền văn minh trên đất nước Việt Nam (trước 1858)
Unit 4: For a Better Community
Chuyên đề 2. Công nghệ enzyme và ứng dụng
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10