Bài 3.33 trang 178 SBT giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG câu b
LG câu c

Tính thể tích các khối tròn xoay khi quay hình phẳng xác định bởi:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG câu b
LG câu c

LG a

\(\displaystyle  y = 2 - {x^2},y = 1\), quanh trục \(\displaystyle  Ox\).

Phương pháp giải:

- Giải phương trình hoành độ giao điểm tìm nghiệm.

- Sử dụng công thức \(\displaystyle  V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \)

Giải chi tiết:

Ta có: \(\displaystyle  2 - {x^2} = 1 \Leftrightarrow {x^2} = 1\)\(\displaystyle   \Leftrightarrow x =  \pm 1\)

Khi đó \(\displaystyle  V = \pi \int\limits_{ - 1}^1 {\left| {{{\left( {2 - {x^2}} \right)}^2} - 1} \right|dx} \) \(\displaystyle   = \pi \int\limits_{ - 1}^1 {\left| {{x^4} - 4{x^2} + 3} \right|dx} \) \(\displaystyle   = \pi \left| {\int\limits_{ - 1}^1 {\left( {{x^4} - 4{x^2} + 3} \right)dx} } \right|\)

\(\displaystyle   = \pi \left| {\left. {\left( {\frac{{{x^5}}}{5} - \frac{4}{3}{x^3} + 3x} \right)} \right|_{ - 1}^1} \right|\) \(\displaystyle   = \pi \left| {\frac{1}{5} - \frac{4}{3} + 3 + \frac{1}{5} - \frac{4}{3} + 3} \right| = \frac{{56\pi }}{{15}}\)

LG câu b

\(\displaystyle  y = 2x - {x^2},y = x\), quanh trục \(\displaystyle  Ox\).

Phương pháp giải:

- Giải phương trình hoành độ giao điểm tìm nghiệm.

- Sử dụng công thức \(\displaystyle  V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \)

Giải chi tiết:

Ta có: \(\displaystyle  2x - {x^2} = x \Leftrightarrow {x^2} - x = 0\) \(\displaystyle   \Leftrightarrow x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Khi đó \(\displaystyle  V = \pi \int\limits_0^1 {\left| {{{\left( {2x - {x^2}} \right)}^2} - {x^2}} \right|dx} \) \(\displaystyle   = \pi \int\limits_0^1 {\left| {4{x^2} - 4{x^3} + {x^4} - {x^2}} \right|dx} \)

\(\displaystyle   = \pi \left| {\int\limits_0^1 {\left( {{x^4} - 4{x^3} + 3{x^2}} \right)dx} } \right|\) \(\displaystyle   = \pi \left| {\left. {\left( {\frac{{{x^5}}}{5} - {x^4} + {x^3}} \right)} \right|_0^1} \right|\) \(\displaystyle   = \pi \left| {\frac{1}{5} - 1 + 1} \right| = \frac{\pi }{5}\)

LG câu c

\(\displaystyle  y = {(2x + 1)^{\frac{1}{3}}},x = 0,y = 3\), quanh trục \(\displaystyle  Oy\).

Phương pháp giải:

Rút \(\displaystyle  x\) theo \(\displaystyle  y\), tính thể tích theo công thức \(\displaystyle  V = \pi \int\limits_a^b {{f^2}\left( y \right)dy} \)

Giải chi tiết:

Ta có: \(\displaystyle  y = {(2x + 1)^{\frac{1}{3}}} \Leftrightarrow x = \frac{{{y^3} - 1}}{2}\) với \(\displaystyle  y > 0\).

Khi đó \(\displaystyle  \frac{{{y^3} - 1}}{2} = 0 \Leftrightarrow {y^3} = 1 \Leftrightarrow y = 1\)

\(\displaystyle   \Rightarrow V = \pi \int\limits_1^3 {{{\left( {\frac{{{y^3} - 1}}{2}} \right)}^2}dy} \) \(\displaystyle   = \pi \int\limits_1^3 {\frac{{{y^6} - 2{y^3} + 1}}{4}dy} \) \(\displaystyle   = \frac{\pi }{4}\int\limits_1^3 {\left( {{y^6} - 2{y^3} + 1} \right)dy} \)

\(\displaystyle   = \frac{\pi }{4}.\left( {\frac{{{y^7}}}{7} - \frac{1}{2}{y^4} + y} \right)_1^3\) \(\displaystyle   = \frac{\pi }{4}\left| {\frac{{{3^7}}}{7} - \frac{{{3^4}}}{2} + 3 - \frac{1}{7} + \frac{1}{2} - 1} \right|\) \(\displaystyle   = \frac{{480\pi }}{7}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved