Chứng minh các bất đẳng thức sau
LG a
\({3^{n - 1}} > n\left( {n + 2} \right)\) với \(n \ge 4\)
Phương pháp giải:
Để chứng minh một mệnh đề đúng với mọi \(n \ge p,p \in {N^*}\), ta tiến hành:
- Bước 1: Kiểm tra mệnh đề đúng khi \(n = p\).
- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge p} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\)
Lời giải chi tiết:
Với \(n = 4\) thì \({3^{4 - 1}} = 27 > 4\left( {4 + 2} \right) = 24.\)
Giả sử đã có \({3^{k - 1}} > k\left( {k + 2} \right)\) với \(k \ge 4.{\rm{ }}\left( 1 \right)\)
Nhân hai vế của (1) với \(3\), ta có
\({3.3^{k - 1}} = {3^{\left( {k + 1} \right) - 1}} > 3k\left( {k + 2} \right)\) \({\rm{ = }}\left( {k + 1} \right)\left[ {\left( {k + 1} \right) + 2} \right]\) \( + 2{k^2} + 2k - 3.\)
Do \(2{k^2} + 2k - 3 > 0\) nên \({3^{\left( {k + 1} \right) - 1}} > \left( {k + 1} \right)\left[ {\left( {k + 1} \right) + 2} \right],\) chứng tỏ bất đẳng thức đúng với \(n = k + 1.\)
LG b
\({2^{n - 3}} > 3n - 1\) với \(n \ge 8.\)
Phương pháp giải:
Để chứng minh một mệnh đề đúng với mọi \(n \ge p,p \in {N^*}\), ta tiến hành:
- Bước 1: Kiểm tra mệnh đề đúng khi \(n = p\).
- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge p} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\).
Lời giải chi tiết:
Với \(n = 8\) ta có: \({2^{8 - 3}} = {2^5} = 32 > 23 = 3.8 - 1\) nên đúng.
Giả sử ta có \({2^{k - 3}} > 3k - 1\,\,\left( 1 \right)\) với \(k \ge 8\), ta cần chứng minh \({2^{\left( {k + 1} \right) - 3}} > 3.\left( {k + 1} \right) - 1\)
Thật vậy, nhân cả hai vế của \(\left( 1 \right)\) với \(2\) ta có:
\({2^{k - 2}} > 3k.2 - 2\)\( \Leftrightarrow {2^{k - 2}} > 3k + 3 + 3k - 5\) \( \Leftrightarrow {2^{k - 2}} > 3\left( {k + 1} \right) + 3k - 5\)
\( \Leftrightarrow {2^{k - 2}} > 3\left( {k + 1} \right) - 1 + 3k - 4\) \( \Leftrightarrow {2^{k - 2}} > 3\left( {k + 1} \right) - 1\)
Hay \({2^{\left( {k + 1} \right) - 3}} > 3\left( {k + 1} \right) - 1\) nên bất đẳng thức đúng với \(n = k + 1\).
Từ đó suy ra đpcm.
Bài 8. Lợi dụng địa hình, địa vật
CLIL
Chủ đề 1. Giới thiệu chung về chăn nuôi
Unit 3: Cities of the future
Chương 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11