Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Nghiệm chung của ba phương trình đã cho được gọi là nghiệm của hệ gồm ba phương trình ấy. Giải hệ phương trình là tìm nghiệm chung của tất cả các phương trình trong hệ. Hãy giải các hệ phương trình sau:
LG a
LG a
\(\left\{ {\matrix{
{3x + 5y = 34} \cr
{4x - 5y = - 13} \cr
{5x - 2y = 5} \cr} } \right.\)
Phương pháp giải:
Sử dụng:
- Chọn trong hệ đã cho hai phương trình lập thành một hệ có nghiệm duy nhất. Giải hệ này bằng phương pháp cộng đại số ta tìm được nghiệm \(({x_0};{y_0})\).
- Nếu \(({x_0};{y_0})\) cũng là nghiệm của phương trình còn lại thì đó là nghiệm của hệ đã cho.
- Nếu \(({x_0};{y_0})\) không phải là nghiệm của phương trình còn lại thì hệ đã cho vô nghiệm.
Lời giải chi tiết:
\(\left\{ {\matrix{
{3x + 5y = 34} \cr
{4x - 5y = - 13} \cr
{5x - 2y = 5} \cr} } \right.\)
Ta giải hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{3x + 5y = 34} \cr
{4x - 5y = - 13} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{7x = 21} \cr
{4x - 5y = - 13} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr
{4.3 - 5y = - 13} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr
{ - 5y = - 25} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr
{y = 5} \cr} } \right. \cr} \)
Thay \(x = 3\) và \(y = 5\) vào phương trình còn lại \(5x - 2y = 5\) ta được:
\(5.3 - 2.5 =5 \Leftrightarrow 5 = 5 \text{(luôn đúng)}\)
Do đó cặp số \((x; y) = (3; 5)\) là nghiệm của phương trình \(5x - 2y = 5\).
Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) = (3;5)\)
LG b
LG b
\(\left\{ {\matrix{
{6x - 5y = - 49} \cr
{ - 3x + 2y = 22} \cr
{7x + 5y = 10} \cr} } \right.\)
Phương pháp giải:
Sử dụng:
- Chọn trong hệ đã cho hai phương trình lập thành một hệ có nghiệm duy nhất. Giải hệ này bằng phương pháp cộng đại số ta tìm được nghiệm \(({x_0};{y_0})\).
- Nếu \(({x_0};{y_0})\) cũng là nghiệm của phương trình còn lại thì đó là nghiệm của hệ đã cho.
- Nếu \(({x_0};{y_0})\) không phải là nghiệm của phương trình còn lại thì hệ đã cho vô nghiệm.
Lời giải chi tiết:
\(\left\{ {\matrix{
{6x - 5y = - 49} \cr
{ - 3x + 2y = 22} \cr
{7x + 5y = 10} \cr} } \right.\)
Ta giải hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{6x - 5y = - 49} \cr
{7x + 5y = 10} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{13x = - 39} \cr
{7x + 5y = 10} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = - 3} \cr
{7.\left( { - 3} \right) + 5y = 10} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{x = - 3} \cr
{y = \displaystyle{{31} \over 5}} \cr} } \right. \cr} \)
Thay \(x = -3\); \(y = \displaystyle{{31} \over 5}\) vào phương trình còn lại \( - 3x + 2y = 22\) ta được:
\( - 3.\left( { - 3} \right) +\displaystyle 2.{{31} \over 5} =22 \\ \Leftrightarrow 9 + \displaystyle{{62} \over 5} =22 \\ \Leftrightarrow \displaystyle{{107} \over 5} = 22 \ \text{(vô lí)} \)
Do đó cặp số \((x; y) =\left( { - 3;\displaystyle {{31} \over 5}} \right)\) không phải là nghiệm của phương trình \( - 3x + 2y = 22\).
Vậy hệ phương trình đã cho vô nghiệm.
CHƯƠNG VI. ỨNG DỤNG DI TRUYỀN HỌC
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Giáo dục công dân lớp 9
CHƯƠNG 5. DẪN XUẤT CỦA HIĐROCACBON. POLIME
Đề thi vào 10 môn Toán Bình Dương
CHƯƠNG I. ĐIỆN HỌC