Đề bài
Cho điểm M(2; -1; 1) và đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{z}{2}\)
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng \(\Delta \);
b) Tìm tọa độ điểm M’ đối xứng với M qua đường thẳng \(\Delta \).
Phương pháp giải - Xem chi tiết
a) Tham số hóa tọa độ hình chiếu của M trên \(\Delta \)
Lập phương trình tìm tham số, sử dụng điều kiện \(\overrightarrow {MH} \bot \overrightarrow {{u_\Delta }} \)
b) \(M'\) đối xứng với \(M\) qua \(\Delta \) nếu \(H\) là trung điểm của \(MM'\).
Lời giải chi tiết
a) Phương trình tham số của \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = - 1 - t}\\{z = 2t}\end{array}} \right.\)
Xét điểm \(H(1 + 2t; - 1 - t;2t) \in \Delta \)
Ta có \(\overrightarrow {MH} = (2t - 1; - t;2t - 1)\), \(\overrightarrow {{u_\Delta }} = (2; - 1;2)\)
H là hình chiếu vuông góc của M trên \(\Delta \Leftrightarrow \overrightarrow {MH} .\overrightarrow {{u_\Delta }} = 0\)
\( \Leftrightarrow 2(2t - 1) + t + 2(2t - 1) = 0\)\( \Leftrightarrow t = \dfrac{4}{9}\)
Ta suy ra tọa độ điểm \(H\left( {\dfrac{{17}}{9};\dfrac{{ - 13}}{9};\dfrac{8}{9}} \right)\)
Cách khác:
Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua \(M\) và vuông góc với \(\Delta \).
Khi đó \(\overrightarrow {{n_\alpha }} = \overrightarrow {{u_\Delta }} = \left( {2; - 1;2} \right)\) là VTPT của \(\left( \alpha \right)\)
Mà \(\left( \alpha \right)\) đi qua \(M\left( {2; - 1;1} \right)\) nên:
\(\left( \alpha \right):2\left( {x - 2} \right) - \left( {y + 1} \right) + 2\left( {z - 1} \right) = 0\) hay \(2x - y + 2z - 7 = 0\)
\(H = \Delta \cap \left( \alpha \right)\) nên tọa độ điểm \(H\) thỏa mãn hệ phương trình:
\(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 1 - t\\z = 2t\\2x - y + 2z - 7 = 0\end{array} \right.\) \( \Rightarrow 2\left( {1 + 2t} \right) - \left( { - 1 - t} \right) + 2.2t - 7 = 0\)
\( \Leftrightarrow 9t - 4 = 0 \Leftrightarrow t = \dfrac{4}{9}\)
\( \Rightarrow H\left( {\dfrac{{17}}{9}; - \dfrac{{13}}{9};\dfrac{8}{9}} \right)\)
b) H là trung điểm của MM’, suy ra \({x_{M'}} + {x_M} = 2{x_H}\)
Suy ra \({x_{M'}} = 2{x_H} - {x_M} = \dfrac{{34}}{9} - 2 = \dfrac{{16}}{9}\)
Tương tự, ta được \({y_{M'}} = 2{y_H} - {y_M} = \dfrac{{ - 26}}{9} + 1 = \dfrac{{ - 17}}{9};\)\({z_{M'}} = 2{z_H} - {z_M} = \dfrac{{16}}{9} - 1 = \dfrac{7}{9}\)
Vậy \(M'\left( {\dfrac{{16}}{9};\dfrac{{ - 17}}{9};\dfrac{7}{9}} \right)\).
Tải 10 đề kiểm tra 15 phút - Chương 6 – Hóa học 12
Bài 38. Thực hành: So sánh về cây công nghiệp lâu năm và chăn nuôi gia súc lớn giữa vùng Tây Nguyên với Trung du và miền núi Bắc Bộ
Đề kiểm tra giữa học kì II - Lớp 12
Chương 8. Cá thể và quần thể sinh vật
Đề kiểm tra 15 phút - Chương 3 – Hóa học 12