Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Hình chóp tam giác S.ABC có đáy là tam giác đều ABC cạnh 7a, có cạnh SC vuông góc với mặt phẳng đáy (ABC) và SC = 7a.
a) Tính góc giữa SA và BC.
b) Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.
Lời giải chi tiết
a) Gọi H là trung điểm của đoạn BC. Qua A vẽ AD song song với BC và bằng đoạn HC thì góc giữa BC và SA là góc \(\widehat {SA{\rm{D}}}\). Theo định lí ba đường vuông góc, ta có SD⊥DA và khi đó:
\(\cos \widehat {SAD} = {{AD} \over {SA}} = {{HC} \over {SA}} = {{{{7a} \over 2}} \over {7a\sqrt 2 }} = {{\sqrt 2 } \over 4}\)
Vậy góc giữa BC và SA được xác định sao cho \(\cos \widehat {SAD} = {{\sqrt 2 } \over 4}\)
Vì \(BC\parallel A{\rm{D}}\) nên BC song song với mặt phẳng (SAD). Do đó khoảng cách giữa SA và BC chính là khoảng cách từ đường thẳng BC đến mặt phẳng (SAD).
Ta kẻ CK⊥SD, suy ra CK⊥(SAD), do đó CK chính là khoảng cách nói trên. Xét tam giác vuông SCD với đường cao CK xuất phát từ đỉnh góc vuông C ta có hệ thức:
\({1 \over {C{K^2}}} = {1 \over {S{C^2}}} + {1 \over {C{D^2}}} \Rightarrow {1 \over {C{K^2}}} = {1 \over {{{\left( {7{\rm{a}}} \right)}^2}}} + {1 \over {{{\left( {{{7{\rm{a}}\sqrt 3 } \over 2}} \right)}^2}}}\)
(vì \(CD = AH = {{BC\sqrt 3 } \over 2} = {{7{\rm{a}}\sqrt 3 } \over 2}\))
Do đó \({1 \over {C{K^2}}} = {1 \over {49{{\rm{a}}^2}}} + {4 \over {3.49{{\rm{a}}^2}}} = {{3 + 4} \over {3.49{{\rm{a}}^2}}} = {1 \over {21{{\rm{a}}^2}}}\)
Vậy \(CK = a\sqrt {21} \)
Chú ý. Nếu kẻ \(KI\parallel A{\rm{D}}\) và kẻ \(IJ\parallel CK\) thì IJ là đoạn vuông góc chung của SA và BC.
Đề kiểm tra giữa học kì 1
Tiếng Anh 11 mới tập 2
Chủ đề 8: Một số quyền dân chủ cơ bản của công dân
Bài 11: Tiết 4: Thực hành: Tìm hiểu về hoạt động kinh tế đối ngoại của Đông Nam Á - Tập bản đồ Địa lí 11
CHƯƠNG VIII: DẪN XUẤT HALOGEN. ANCOL - PHENOL
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11