ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 3.45 trang 133 SBT đại số và giải tích 11

Đề bài

Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội là q và số các số hạng là chẵn. Gọi \({S_c}\) là tổng các số hạng có chỉ số chẵn và \({S_l}\) là tổng các số hạng có chỉ số lẻ. Chứng minh rằng :\(q = \dfrac{{{S_c}}}{{{S_l}}}.\)

Phương pháp giải - Xem chi tiết

Gọi số hạng thứ nhất của cấp số nhân là \({u_1}\) và công bội là \(q\)

Lập công thức tính \({S_c},{S_l}\) và suy ra đpcm.

Lời giải chi tiết

Gọi số hạng thứ nhất của cấp số nhân là \({u_1}\) và công bội là \(q\)

Giả sử CSN có \(2n\) số hạng.

Ta có

\(\begin{array}{l}
{S_l} = {u_1} + {u_3} + ... + {u_{2n - 1}}\\
= {u_1} + {u_1}{q^2} + ... + {u_1}.{q^{2n - 2}}\,\,(1)\\
{S_c} = {u_2} + {u_4} + ... + {u_{2n}}\\
= {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{2n - 1}}\,\,(2)
\end{array}\)

Nhân hai vế của (1) với q ta có

\(q{S_l} = {u_1}q + {u_1}{q^3} + ... +u_1q^{2n-1}= {S_c}\)

Vậy \(q = \dfrac{{{S_c}}}{{{S_l}}}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved