Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Trong mặt phẳng tọa độ, các đỉnh của tam giác \(ABC\) có tọa độ như sau: \(A(1 ; 1) ; B(5 ; 1) ; C(7 ; 9).\)
Hãy tính:
a) Giá trị của \(tg\widehat {BAC}\) (làm tròn đến chữ số thập phân thứ tư);
b) Độ dài của cạnh \(AC\).
Phương pháp giải - Xem chi tiết
Các tỉ số lượng giác của góc nhọn (hình) được định nghĩa như sau:
\(\sin \alpha = \dfrac{{AB}}{{BC}};\cos \alpha = \dfrac{{AC}}{{BC}};\)\(\tan \alpha = \dfrac{{AB}}{{AC}};\cot \alpha = \dfrac{{AC}}{{AB}}.\)
Định lý Pytago vào tam giác ABC vuông tại A.
\(A{B^2} + A{C^2} = B{C^2}\)
Lời giải chi tiết
a) Vì tam giác \(ACH\) vuông tại \(H\) nên ta có:
\(tg\widehat {HAC} = \dfrac{{CH}}{{AH}}\)\( = \dfrac{{9 - 1}}{{7 - 1}} = \dfrac{8}{6} \approx 1,3333\)
Mà \(A, B, H\) thẳng hàng nên suy ra:
\(tg\widehat {BAC} = tg\widehat {HAC} \approx 1,3333\)
b) Áp dụng định lí Pytago vào tam giác vuông \(ACH\), ta có:
\(A{C^2} = C{H^2} + A{H^2}\)
Suy ra: \(AC = \sqrt {C{H^2} + A{H^2}}\)\( = \sqrt {{8^2} + {6^2}} = \sqrt {100} = 10\)
Bài 8: Năng động, sáng tạo
Đề thi vào 10 môn Toán Trà Vinh
Đề thi vào 10 môn Văn Yên Bái
Đề thi vào 10 môn Toán Bình Phước
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hóa học 9