1. Nội dung câu hỏi
Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:
Tìm trung vị của mẫu số liệu này và giải thích ý nghĩa của giá trị thu được.
2. Phương pháp giải
Để tính trung vị \({M_e}\) của mẫu số liệu ghép nhóm ta làm như sau:
Bước 1: Xác định nhóm chứa trung vị. Giả sử đó là nhóm thứ j: \(\left[ {{a_j};{a_{j + 1}}} \right)\)
Bước 2: Trung vị là: \({M_e} = {a_j} + \frac{{\frac{n}{2} - \left( {{m_1} + ... + {m_{j - 1}}} \right)}}{{{m_j}}}\left( {{a_{j + 1}} - {a_j}} \right)\)
Trong đó, n là cỡ mẫu. Với \(j = 1\) ta quy ước \({m_1} + ... + {m_{j - 1}} = 0\). Trung vị chính là tứ phân vị thứ hai \({Q_2}.\) Trung vị của mẫu số liệu ghép nhóm xấp xỉ cho trung vị của mẫu số liệu gốc, nó chia mẫu số liệu thành 2 phần, mỗi phần chứa 50% giá trị.
3. Lời giải chi tiết
Cỡ mẫu \(n = 2 + 5 + 6 + 9 + 3 = 25\). Nhóm chứa trung vị là \(\left[ {6;8} \right)\). Trung vị là:
\({M_e} = 6 + \frac{{\frac{{25}}{2} - \left( {2 + 5} \right)}}{6}\left( {8 - 6} \right) \approx 7,83\)
Có 50% số cầu thủ chạy nhiều hơn 7,83km và có 50% số cầu thủ chạy ít hơn 7,83km.
Chuyên đề 2: Làm quen với một vài khái niệm của lí thuyết đồ thị
Tác giả - Tác phẩm Ngữ văn 11 tập 1
Bài 13: Hydrocarbon không no
Chương 3: Đại cương hóa học hữu cơ
Bài 2. Luật Nghĩa vụ quân sự và trách nhiệm của học sinh
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11