Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Không giải phương trình, dùng hệ thức Vi-ét, hãy tính tổng và tích các nghiệm của mỗi phương trình:
LG a
LG a
\(2{x^2} - 7x + 2 = 0\)
Phương pháp giải:
Áp dụng hệ thức Vi-ét:
Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Lời giải chi tiết:
\(2{x^2} - 7x + 2 = 0 \)
Hệ số \(a=2;b=-7;c=2\)
\(\Delta = {\left( { - 7} \right)^2} - 4.2.2 \)\(\,= 49 - 16 = 33 > 0 \)
Phương trình có hai nghiệm phân biệt.
Theo hệ thức Vi-ét ta có:
\(\displaystyle {x_1} + {x_2} = -\dfrac{b}{a}= {7 \over 2}\)
\(\displaystyle {x_1}{x_2} = \dfrac{c}{a}= {2 \over 2} = 1\)
LG b
LG b
\(2{x^2} + 9x + 7 = 0\)
Phương pháp giải:
Áp dụng hệ thức Vi-ét:
Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Lời giải chi tiết:
\(2{x^2} + 9x +7 = 0 \)
Hệ số \(a = 2;b=9;c =7 \)
\( \Delta =9^2-4.2.7=25>0\)
Phương trình có hai nghiệm phân biệt.
Theo hệ thức Vi-ét ta có:
\(\displaystyle {x_1} + {x_2} = -\dfrac{b}{a}= - {9 \over 2};{x_1}{x_2} =\dfrac{c}{a}= {{7} \over 2}\)
LG c
LG c
\(\left( {2 - \sqrt 3 } \right){x^2} + 4x + 2 + \sqrt 2 = 0\)
Phương pháp giải:
Áp dụng hệ thức Vi-ét:
Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Lời giải chi tiết:
\(\left( {2 - \sqrt 3 } \right){x^2} + 4x + 2 + \sqrt 2 = 0 \)
\( \Delta ' = {2^2} - \left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 2 } \right) \)
\(\,= 4 - 4 - 2\sqrt 2 + 2\sqrt 3 + \sqrt 6 \)
\( \,= 2\sqrt 3 + \sqrt 6 - 2\sqrt 2 > 0 \)
Phương trình có hai nghiệm phân biệt.
Theo hệ thức Vi-ét ta có:
\( \displaystyle {x_1} + {x_2} = -\dfrac{b}{a}= {{ - 4} \over {2 - \sqrt 3 }} \)\(= - 4\left( {2 + \sqrt 3 } \right) \)
\(\displaystyle {x_1}{x_2} = \dfrac{c}{a}= {{2 + \sqrt 2 } \over {2 - \sqrt 3 }}\)\(\, \displaystyle= {{\left( {2 + \sqrt 2 } \right)\left( {2 + \sqrt 3 } \right)} \over {4 - 3}} \)\(\,\displaystyle= 4 + 2\sqrt 3 + 2\sqrt 2 + \sqrt 6 \)
LG d
LG d
\(1,4{x^2} - 3x + 1,2 = 0\)
Phương pháp giải:
Áp dụng hệ thức Vi-ét:
Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Lời giải chi tiết:
\(1,4{x^2} - 3x + 1,2 = 0 \)
\( \Delta = {\left( { - 3} \right)^2} - 4.1,4.1,2 \)\(\,= 9 - 6,72 = 2,28 > 0 \)
Phương trình có hai nghiệm phân biệt
Theo hệ thức Vi-ét ta có:
\(\eqalign{
& {x_1} + {x_2} = -\dfrac{b}{a}= - {{ - 3} \over {1,4}} = {{30} \over {14}} = {{15} \over 7} \cr
& {x_1}{x_2} = \dfrac{c}{a}= {{1,2} \over {1,4}} = {6 \over 7} \cr} \)
LG e
LG e
\(5{x^2} + x + 2 = 0\)
Phương pháp giải:
Áp dụng hệ thức Vi-ét:
Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Lời giải chi tiết:
\(5{x^2} + x + 2 = 0 \)
\( \Delta = 1 - 4.5.2 = 1 - 40 = - 39 < 0 \)
Phương trình vô nghiệm, không có tổng và tích của các nghiệm.
Đề ôn tập học kì 2 – Có đáp án và lời giải
CHƯƠNG V. DI TRUYỀN HỌC NGƯỜI
Tải 20 đề kiểm tra 15 phút học kì 1 Văn 9
Bài 7
Đề thi vào 10 môn Văn Hải Dương