Bài 1. Định lí Ta-lét trong tam giác
Bài 2. Định lí đảo và hệ quả của định lí Ta-lét
Bài 3. Tính chất đường phân giác của tam giác
Bài 4. Khái niệm hai tam giác đồng dạng
Bài 5. Trường hợp đồng dạng thứ nhất (c.c.c)
Bài 6. Trường hợp đồng dạng thứ hai (c.g.c)
Bài 7. Trường hợp đồng dạng thứ ba (g.g)
Bài 8. Các trường hợp đồng dạng của tam giác vuông
Ôn tập chương III. Tam giác đồng dạng
Bài 1. Hình hộp chữ nhật
Bài 2. Hình hộp chữ nhật (tiếp)
Bài 3. Thể tích của hình hộp chữ nhật
Bài 4. Hình lăng trụ đứng
Bài 5. Diện tích xung quanh của hình lăng trụ đứng
Bài 6. Thể tích của hình lăng trụ đứng
Bài 7. Hình chóp đều và hình chóp cụt đều
Bài 8. Diện tích xung quanh của hình chóp đều
Bài 9. Thể tích của hình chóp đều
Ôn tập chương IV. Hình lăng trụ đứng. Hình chóp đều
Đề bài
Đáy của lăng trụ đứng là một hình thang cân có các cạnh \(b = 11mm, a = 15mm\) và chiều cao \(h_T= 7mm\) (h.127)
Chiều cao của hình lăng trụ là \(h = 14mm.\) Tính diện tích xung quanh của lăng trụ.
Phương pháp giải - Xem chi tiết
Sử dụng: Diện tích xung quanh của hình lăng trụ đứng bằng tổng diện tích các mặt bên hoặc bằng chu vi đáy nhân với chiều cao.
\({S_{xq}} = 2p.h\)
Trong đó: \(p\) là nửa chu vi đáy, \(h\) là chiều cao
Lời giải chi tiết
Giả sử hình lăng trụ có \(CD = 11mm\); \(AB = 15mm;\) \(DH = 7mm\) và \(BB'=14mm\).
Ta có: \(\displaystyle AH = {{AB - CD} \over 2} = {{15 - 11} \over 2} \)\(\,= 2\;(mm)\) (vì \(ABCD\) là hình thang cân).
Áp dụng định lí Py-ta-go vào tam giác vuông \(AHD\), ta có:
\( A{D^2} = A{H^2} + H{D^2} = {2^2} + {7^2} = 53 \)
\( \Rightarrow AD = \sqrt {53}\; (mm)\)
Vì \(ABCD\) là hình thang cân nên \(BC = AD= \sqrt {53}\; (mm)\)
Ta có:
\( {S_{xq}} = \left( {AB + BC + DC + AD} \right).BB' \)
\(= \left( {AB + DC + 2AD} \right).BB' \)
\(= \left( {15 + 11 + 2\sqrt {53} } \right).14 \)
\(= \left( {364 + 28\sqrt {53} } \right)(m{m^2}) \)
CHƯƠNG 11. SINH SẢN
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 8
Unit 5. Years ahead
Presentation skills
Chủ đề 6. Tham gia hoạt động phát triển cộng đồng
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8