Bài 3.8 trang 103 SBT hình học 12

Đề bài

Trong không gian cho ba vecto tùy ý  \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \). Gọi  \(\overrightarrow u  = \overrightarrow a  - 2\overrightarrow b ,\) \(\overrightarrow v  = 3\overrightarrow b  - \overrightarrow c ,\) \(\overrightarrow {\rm{w}}  = 2\overrightarrow c  - 3\overrightarrow a \).

Chứng tỏ rằng ba vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.

Phương pháp giải - Xem chi tiết

Muốn chứng tỏ rằng ba vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng ta cần tìm hai số thực p và q sao cho \(\overrightarrow {\rm{w}}  = p\overrightarrow u  + q\overrightarrow v \).

Lời giải chi tiết

Giả sử có \(\overrightarrow {\rm{w}}  = p\overrightarrow u  + q\overrightarrow v \)

\(2\overrightarrow c  - 3\overrightarrow a  = p(\overrightarrow a  - 2\overrightarrow b ) + q(3\overrightarrow b  - \overrightarrow c ) \)

\( \Leftrightarrow  (3 + p)\overrightarrow a  + (3q - 2p)\overrightarrow b  - (q + 2)\overrightarrow c  = \overrightarrow 0 \)(1)

Vì ba vecto \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) lấy tùy ý  nên đẳng thức (1) xảy ra khi và chỉ khi:

\(\left\{ {\begin{array}{*{20}{c}}{3 + p = 0}\\{3q - 2p = 0}\\{q + 2 = 0}\end{array}} \right. \) \( \Rightarrow   \left\{ {\begin{array}{*{20}{c}}{p =  - 3}\\{q =  - 2}\end{array}} \right.\)

Như vậy ta có: \(\overrightarrow {\rm{w}}  =  - 3\overrightarrow u  - 2\overrightarrow v \)  nên ba vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved