Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Cho các hàm số :
\(y = 2x - 2\); (d1)
\(y = - \dfrac{4}{3}x - 2\); (d2)
\(y = \dfrac{1}{3}x + 3\). (d3)
a) Vẽ đồ thị của các hàm số đã cho trên cùng một mặt phẳng tọa độ .
b) Gọi giao điểm của đường thẳng (d3) với (d1) và (d2) theo thứ tự là A, B. Tìm tọa độ của A, B
c) Tính khoảng cách AB.
Phương pháp giải - Xem chi tiết
Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\)
+ Nếu \(b = 0\) ta có hàm số \(y = ax\) . Đồ thị của \(y = ax\) là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(A(1;a)\);
+ Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\).
Khoảng cách giữa hai điểm \(A({x_1};{y_1})\) và \(B({x_2};{y_2})\)
\(AB = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \)
Lời giải chi tiết
a) +) Vẽ đồ thị hàm số \(y = 2x -2\) (d1)
Cho \(x = 0\) thì \(y = - 2\). Ta có :
Cho \(y = 0\) thì \(2x – 2 = 0\) \( \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\). Ta có: \((1; 0)\)
Đồ thị hàm số đi qua hai điểm \((0; 2)\) và \((1; 0)\)
+) Vẽ đồ thị hàm số \(y = - \dfrac{4}{3}x - 2\) (d2)
Cho \(x = 0\) thì \(y = - 2\). Ta có:
Cho \(y = 0\) thì \( - \dfrac{4 }{3}x - 2 = 0 \Leftrightarrow x = - 1,5\) . Ta có: \(\left( { - 1,5;0} \right)\)
Đồ thị hàm số đi qua hai điểm \(\left( {0; - 2} \right)\) và \(\left( { - 1,5;0} \right)\)
+) Vẽ đồ thị hàm số \(y = \dfrac{1}{3}x + 3\) (d3)
Cho \(x = 0\) thì \(y = 3.\) Ta có: \((0;3)\)
Cho \(y = 0\) thì \(\dfrac{1}{3}x + 3 = 0 \Leftrightarrow x = - 9\). Ta có: \((-9; 0)\)
Đồ thị hàm số đi qua hai điểm \((0; 3)\) và \((-9; 0)\)
b) Phương trình hoành độ giao điểm của (d1) và (d3) :
\(\eqalign{
& 2x - 2 = {1 \over 3}x + 3 \cr
& \Leftrightarrow 2x - {1 \over 3}x = 3 + 2 \cr
& \Leftrightarrow {5 \over 3}x = 5 \Leftrightarrow x = 3 \cr} \)
Tung độ giao điểm: \(y = 2.3 - 2 \Leftrightarrow y = 6 - 2 = 4\)
Vậy tọa độ điểm A là : \(A(3; 4)\)
Phương trình hoành độ giao điểm của (d2) và (d3):
\(\eqalign{
& - {4 \over 3}x - 2 = {1 \over 3}x + 3 \cr
& \Leftrightarrow {1 \over 3}x + {4 \over 3}x = - 2 - 3 \cr
& \Leftrightarrow {5 \over 3}x = - 5 \Leftrightarrow x = - 3 \cr} \)
Tung độ giao điểm :
\(y = \dfrac{1}{3}.\left( { - 3} \right) + 3 \Leftrightarrow y = - 1 + 3 = 2\)
Vậy tọa độ điểm B là :\( B(-3 ; 2)\)
c) Ta có:
\(\eqalign{
& A{B^2} = {\left( {{x_A} - {x_B}} \right)^2} + {\left( {{y_A} - {y_B}} \right)^2} \cr
& = {\left( {3 + 3} \right)^2} + {\left( {4 - 2} \right)^2} = 40 \cr
& AB = \sqrt {40} = 2\sqrt {10} \cr} \).
Đề kiểm tra 15 phút - Chương 9 - Sinh 9
Bài 12
Đề thi vào 10 môn Toán Quảng Ninh
Đề thi vào 10 môn Văn Bình Dương
Đề thi vào 10 môn Văn Bắc Kạn