Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Chứng minh các đẳng thức sau:
a) \(\dfrac{3}{2}\sqrt 6 + 2\sqrt {\dfrac{2}{3}} - 4\sqrt {\dfrac{3}{2}} = \dfrac{{\sqrt 6 }}{6}\)
b) \(\left( {x\sqrt {\dfrac{6}{x}} + \sqrt {\dfrac{{2x}}{3}} + \sqrt {6x} } \right):\sqrt {6x} = 2\dfrac{1}{3}\) (với \(x > 0\))
Phương pháp giải - Xem chi tiết
+ Biến đổi vế trái thành vế phải ta sẽ có điều cần chứng minh.
+ Sử dụng công thức sau:
\(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt a}{\sqrt b}\) với \(a\ge 0;b>0.\)
Lời giải chi tiết
a) \(\dfrac{3}{2}\sqrt 6 + 2\sqrt {\dfrac{2}{3}} - 4\sqrt {\dfrac{3}{2}} \)\( = \dfrac{3}{2}\sqrt 6 + 2 \cdot \dfrac{1}{3}\sqrt 6 - 4 \cdot \dfrac{1}{2}\sqrt 6 \) \( = \left( {\dfrac{3}{2} + \dfrac{2}{3} - 2} \right)\sqrt 6 \) \( = \dfrac{1}{6}\sqrt 6 \)
Vế trái bằng vế phải. Vậy đẳng thức đúng.
b) Biến đổi vế trái, ta có :
\(\left( {x\sqrt {\dfrac{6}{x}} + \sqrt {\dfrac{{2x}}{3}} + \sqrt {6x} } \right):\sqrt {6x} = \)\(\left( {x \cdot \dfrac{1}{x}\sqrt {6x} + \dfrac{1}{3}\sqrt {6x} + \sqrt {6x} } \right):\sqrt {6x} \) \( = \dfrac{7}{3}\sqrt {6x} :\sqrt {6x} \) \( = \dfrac{7}{3} = 2\dfrac{1}{3}\)
Vế trái bằng vế phải. Vậy đẳng thức đúng.
Đề kiểm tra 15 phút - Chương 7 - Sinh 9
Đề kiểm tra 15 phút - Học kì 1 - Sinh 9
Đề thi vào 10 môn Toán Hà Tĩnh
Bài 22. Thực hành: Vẽ và phân tích biểu đồ về mối quan hệ giữa dân số, sản lượng lương thực và bình quân lương thực theo đầu người
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Giáo dục công dân lớp 9