Đề bài
Khoảng cách từ điểm M(5 ; – 2) đến đường thẳng ∆: - 3x + 2y + 6 = 0 là:
A. 13 B. \(\sqrt {13} \) C. \(\frac{{\sqrt {13} }}{{13}}\) D. \(2\sqrt {13} \)
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính khoảng cách từ một điểm \(M({x_M};{y_M})\) đến đường thẳng \(\Delta :ax + by + c = 0\):
\(d(M,\Delta ) = \frac{{\left| {a{x_M} + b{y_M} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Lời giải chi tiết
Ta có: \(d(M,\Delta ) = \frac{{\left| {( - 3).5 + 2.( - 2) + 6} \right|}}{{\sqrt {{{( - 3)}^2} + {2^2}} }} = \frac{{\left| { - 13} \right|}}{{\sqrt {13} }} = \sqrt {13} \)
Chọn B
Unit 9: Consumer society
Chương 4. Khí quyển
Chương 1. Cấu tạo nguyên tử
Chương 7. Nguyên tố nhóm halogen
Review (Units 5 - 8)
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10