PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 4 trang 103 SBT toán 9 tập 1

Đề bài

Hãy tính \(x\) và \(y\) trong các hình sau:

 

Phương pháp giải - Xem chi tiết

 

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau: 

+) \(A{B^2} = BH.BC\) hay \({c^2} = a.c'\)  

+) \(A{C^2} = CH.BC\) hay \({b^2} = ab'\)

+) \(AH.BC=AB.AC\)

+) \(AB^2+AC^2=BC^2\) hay \(c^2+b^2=a^2\) (định lý Pytago) 

Lời giải chi tiết

 

a) Hình a 

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

\({3^2} = 2.x \Rightarrow x = \dfrac{{{3^2}}}{2} = \dfrac{{9}}{{ 2}} = 4,5\) 

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có: 

\(\eqalign{
& {y^2} = x.(x + 2) = 4,5.(4,5 + 2) \cr 
& \Rightarrow y^2= 29,25 \cr 
& \Rightarrow y = \sqrt {29,25} \cr} \)

b) Hình b

Ta có:

\(\eqalign{
& {{AB} \over {AC}} = {3 \over 4} \cr 
& \Rightarrow {{AB} \over 3} = {{AC} \over 4} \cr 
& \Rightarrow AC = 4.{{AB} \over 3} \cr 
& = 4.{{15} \over 3}= 4.5 = 20 \cr} \)

Theo định lý Pi-ta-go, ta có:

\({y^2} = B{C^2} = A{B^2} + A{C^2}\)\( = {15^2} + {20^2} = 625\)

Suy ra:

\(y = \sqrt {625}  = 25\)

Theo hệ thức liên hệ giữa đường cao và cạnh trong tam giác vuông, ta có:

\(\eqalign{
& x.y = 15.20 \cr 
& \Rightarrow x = {{15.20} \over y} = {{15.20} \over {25}} = 12 \cr} \) 

Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved