Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Hãy tính \(x\) và \(y\) trong các hình sau:
Phương pháp giải - Xem chi tiết
Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:
+) \(A{B^2} = BH.BC\) hay \({c^2} = a.c'\)
+) \(A{C^2} = CH.BC\) hay \({b^2} = ab'\)
+) \(AH.BC=AB.AC\)
+) \(AB^2+AC^2=BC^2\) hay \(c^2+b^2=a^2\) (định lý Pytago)
Lời giải chi tiết
a) Hình a
Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:
\({3^2} = 2.x \Rightarrow x = \dfrac{{{3^2}}}{2} = \dfrac{{9}}{{ 2}} = 4,5\)
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
\(\eqalign{
& {y^2} = x.(x + 2) = 4,5.(4,5 + 2) \cr
& \Rightarrow y^2= 29,25 \cr
& \Rightarrow y = \sqrt {29,25} \cr} \)
b) Hình b
Ta có:
\(\eqalign{
& {{AB} \over {AC}} = {3 \over 4} \cr
& \Rightarrow {{AB} \over 3} = {{AC} \over 4} \cr
& \Rightarrow AC = 4.{{AB} \over 3} \cr
& = 4.{{15} \over 3}= 4.5 = 20 \cr} \)
Theo định lý Pi-ta-go, ta có:
\({y^2} = B{C^2} = A{B^2} + A{C^2}\)\( = {15^2} + {20^2} = 625\)
Suy ra:
\(y = \sqrt {625} = 25\)
Theo hệ thức liên hệ giữa đường cao và cạnh trong tam giác vuông, ta có:
\(\eqalign{
& x.y = 15.20 \cr
& \Rightarrow x = {{15.20} \over y} = {{15.20} \over {25}} = 12 \cr} \)
Đề thi vào 10 môn Toán Quảng Trị
Đề thi vào 10 môn Văn Đồng Tháp
Bài 16: Quyền tham gia quản lý nhà nước, quản lý xã hội của công dân
Bài 10
Đề thi vào 10 môn Toán Hà Tĩnh