SBT Toán 11 - Chân trời sáng tạo tập 1

Câu hỏi 4 - Mục Bài tập trang 128

1. Nội dung câu hỏi

Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm của AB, CD. (P) là mặt phẳng đi qua MN và song song với mặt phẳng (SAD). Tìm giao tuyến của các mặt hình chóp với mặt phẳng (P).


2. Phương pháp giải

Sử dụng kiến thức về điều kiện để hai mặt phẳng song song để chứng minh: Nếu mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng (Q) thì (P) song song với (Q).

 

3. Lời giải chi tiết 

Vì M, N lần lượt là trung điểm của AB, CD nên MN//BC//AD

Mà \(AD \subset \left( {SAD} \right)\), MN không nằm trong (SAD) nên MN//(SAD)

Gọi E là trung điểm của SC.

Vì N, E lần lượt là trung điểm của CD, SC nên NE là đường trung bình của tam giác SCD, suy ra NE//SD.

Mà \(SD \subset \left( {SAD} \right)\), NE không nằm trong mặt phẳng (SAD) nên NE//(SAD).

Vì MN//(SAD), NE//(SAD), NE và MN cắt nhau tại N và nằm trong mặt phẳng (MNE) nên (MNE)//(SAD).

Gọi F là trung điểm của SB, tương tự ta có (MNEF) là mặt phẳng (P).

Vậy \(\left( P \right) \cap \left( {ABCD} \right) = MN\) với MN//BC//AD.

\(\left( P \right) \cap \left( {SAB} \right) = MF\) với MF//SA (F là trung điểm của SB)

\(\left( P \right) \cap \left( {SCD} \right) = NE\) với NE//SD (E là trung điểm của SC)

\(\left( P \right) \cap \left( {SCB} \right) = FE\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved