Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3, 4, 5. Những hằng đẳng thức đáng nhớ
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Bài tập ôn chương I. Phép nhân và phép chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Bài tập ôn chương II. Phân thức đại số
Dùng tính chất cơ bản của phân thức, hãy điền một đa thức thích hợp vào các chỗ trống trong mỗi đẳng thức sau:
LG a
\(\displaystyle {{x - {x^2}} \over {5{x^2} - 5}} = {x \over {...}}\)
Phương pháp giải:
- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.
\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))
- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.
\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)
Lời giải chi tiết:
Ta có: \(x-x^2=x(1-x)\)
Từ tử thức hai vế chứng tỏ tử thức vế trái đã chia cho \(1 - x\) nên mẫu thức phải chia cho \(1 - x\)
Mà \(5{x^2} - 5 = 5\left( {x - 1} \right)\left( {x + 1} \right) \)\(\,= - 5\left( {1 - x} \right)\left( {x + 1} \right)\)
Ta có : \(\displaystyle \frac{{x - {x^2}}}{{5{x^2} - 5}} = \frac{{x\left( {1 - x} \right)}}{{ - 5\left( {1 - x} \right)\left( {x + 1} \right)}} \)\(\,= \dfrac{x}{{ - 5\left( {x + 1} \right)}}\)
Vậy đa thức cần điền vào chỗ trống là \( - 5\left( {x + 1} \right)\)
LG b
\(\displaystyle {{{x^2} + 8} \over {2x - 1}} = {{3{x^3} + 24x} \over {...}}\)
Phương pháp giải:
- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.
\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))
- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.
\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)
Lời giải chi tiết:
\(\displaystyle {{{x^2} + 8} \over {2x - 1}} = {{3{x^3} + 24x} \over {...}}\)
\( \displaystyle \Rightarrow {{{x^2} + 8} \over {2x - 1}} = {{3x\left( {{x^2} + 8} \right)} \over {...}}\)
Từ tử thức hai vế chứng tỏ tử thức vế trái được nhân với \(3x\) nên mẫu thức cũng nhân với \(3x\).
Vậy đa thức cần điền vào chỗ trống là \(3x\left( {2x - 1} \right) = 6{x^2} - 3x\)
Ta có: \(\displaystyle {{{x^2} + 8} \over {2x - 1}} = {{3{x^3} + 24x} \over {6{x^2} - 3x}}\)
LG c
\(\displaystyle {{...} \over {x - y}} = {{3{x^2} - 3xy} \over {3{{\left( {y - x} \right)}^2}}}\)
Phương pháp giải:
- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.
\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))
- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.
\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)
Lời giải chi tiết:
\(\displaystyle {{...} \over {x - y}} = {{3{x^2} - 3xy} \over {3{{\left( {y - x} \right)}^2}}}\)
\(\displaystyle \Rightarrow \frac{{...}}{{x - y}} = \frac{{3x\left( {x - y} \right)}}{{3{{\left( {x - y} \right)}^2}}}\)
Từ mẫu thức hai vế chứng tỏ mẫu thức vế trái được nhân với \(3\left( {x - y} \right)\) nên tử cũng được nhân với \(3\left( {x - y} \right)\) mà \(3{x^2} - 3xy = 3x\left( {x - y} \right)\)
Vậy đa thức cần điển vào chỗ trống là \(x\)
Ta có: \(\displaystyle {x \over {x - y}} = {{3{x^2} - 3xy} \over {3{{\left( {y - x} \right)}^2}}}\)
LG d
\(\displaystyle {{ - {x^2} + 2xy - {y^2}} \over {x + y}} = {{...} \over {{y^2} - {x^2}}}\)
Phương pháp giải:
- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.
\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))
- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.
\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)
Lời giải chi tiết:
\(\displaystyle {{ - {x^2} + 2xy - {y^2}} \over {x + y}} = {{...} \over {{y^2} - {x^2}}}\)
\( \Rightarrow \)\(\displaystyle{{ - {x^2} + 2xy - {y^2}} \over {x + y}} = {{...} \over {\left( {y - x} \right)\left( {x + y} \right)}}\)
Từ mẫu thức hai vế chứng tỏ mẫu thức vế trái nhân thêm \(y - x\) nên tử phải nhân với \(y - x\), đa thức cần điền là
\(\left( { - {x^2} + 2xy - {y^2}} \right)\left( {y - x} \right)\)
\( = - \left( {{x^2} - 2xy + {y^2}} \right)\left( {y - x} \right)\)
\(= \left( {x - y} \right){\left( {x - y} \right)^2} = {\left( {x - y} \right)^3}\)
Ta có: \(\displaystyle {{ - {x^2} + 2xy - {y^2}} \over {x + y}} = {{{{\left( {x - y} \right)}^3}} \over {{y^2} - {x^2}}}\)
Test yourself 4
Bài 8: Lập kế hoạch chi tiêu
Bài 16: Quyền sở hữu tài sản và nghĩa vụ tôn trọng tài sản của người khác
Unit 1. Fads and fashions
Review 3 (Units 7-8-9)
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8