1. Nội dung câu hỏi
Rút gọn mỗi phân thức sau:
a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\)
b) \(\frac{{x - y}}{{y - x}}\)
c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\)
d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\)
2. Phương pháp giải
Muốn rút gọn một phân thức ta có thể làm như sau:
Bước 1: phân tích tử và mẫu thành nhân tử (nếu cần)
Bước 2: tìm nhân tử chung của tử và mẫu rồi chia cả tử và mẫu cho nhân tử chung.
3. Lời giải chi tiết
a) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)
Ta có: \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}} = \frac{{5.5{x^2}{y^3}}}{{5.7{x^3}{x^2}}} = \frac{{5y}}{{7x}}\)
b) Điều kiện xác định của phân thức là \(y - x \ne 0\)
Ta có: \(\frac{{x - y}}{{y - x}} = \frac{{ - \left( {y - x} \right)}}{{y - x}} = - 1\)
c) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)
Ta có: \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}} = \frac{{\left( { - 1} \right).{x^5}{y^2}}}{{\left( { - 1} \right).{x^2}{y^3}}} = \frac{{{x^3}}}{y}\)
d) Điều kiện xác định của phân thức là \({x^3} - 4{x^2} + 4x \ne 0\)
Ta có: \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}} = \frac{{x\left( {x - 2} \right)}}{{x\left( {{x^2} - 4x + 4} \right)}} = \frac{{x\left( {x - 2} \right)}}{{x{{\left( {x - 2} \right)}^2}}} = \frac{1}{{x - 2}}\)
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hóa học 8
Chương 4. Kĩ thuật điện
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 8
Tải 10 đề kiểm tra 1 tiết - Chương 6
Unit 6: Lifestyles
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8