Câu hỏi 4 - Mục Bài tập trang 33

1. Nội dung câu hỏi

Rút gọn mỗi phân thức sau:

a) \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}}\)

b) \(\frac{{x - y}}{{y - x}}\)

c) \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}}\)

d) \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}}\)

 

2. Phương pháp giải

Muốn rút gọn một phân thức ta có thể làm như sau:

Bước 1: phân tích tử và mẫu thành nhân tử (nếu cần)

Bước 2: tìm nhân tử chung của tử và mẫu rồi chia cả tử và mẫu cho nhân tử chung.

 

3. Lời giải chi tiết

a) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)

Ta có: \(\frac{{25{x^2}{y^3}}}{{35{x^3}{y^2}}} = \frac{{5.5{x^2}{y^3}}}{{5.7{x^3}{x^2}}} = \frac{{5y}}{{7x}}\)

b) Điều kiện xác định của phân thức là \(y - x \ne 0\)

Ta có: \(\frac{{x - y}}{{y - x}} = \frac{{ - \left( {y - x} \right)}}{{y - x}} =  - 1\)

c) Điều kiện xác định của phân thức là \(x \ne 0;y \ne 0\)

Ta có: \(\frac{{{{\left( { - x} \right)}^5}{y^2}}}{{{x^2}{{\left( { - y} \right)}^3}}} = \frac{{\left( { - 1} \right).{x^5}{y^2}}}{{\left( { - 1} \right).{x^2}{y^3}}} = \frac{{{x^3}}}{y}\)

d) Điều kiện xác định của phân thức là \({x^3} - 4{x^2} + 4x \ne 0\)

Ta có: \(\frac{{{x^2} - 2x}}{{{x^3} - 4{x^2} + 4x}} = \frac{{x\left( {x - 2} \right)}}{{x\left( {{x^2} - 4x + 4} \right)}} = \frac{{x\left( {x - 2} \right)}}{{x{{\left( {x - 2} \right)}^2}}} = \frac{1}{{x - 2}}\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved