Bài 4 trang 46 sách bài tập toán 10 - Chân trời sáng tạo

Đề bài

Tìm khoảng đồng biến và nghịch biến của các hàm số sau:

a) \(f\left( x \right) = \frac{1}{{ - x - 5}}\)

b) \(f\left( x \right) = \left| {3{\rm{x}} - 1} \right|\)

Phương pháp giải - Xem chi tiết

Bước 1: Xác định tập xác định của hàm số

Bước 2: Lấy \({x_1},{x_2}\) tùy ý thuộc tập xác định, thay vào f(x) tính và so sánh biết:

Với hàm số \(y = f\left( x \right)\) xác định trên khoảng (a; b) thì ta có

+) Hàm số đồng biến trên khoảng (a; b) nếu \(\forall {x_1},{x_2} \in \left( {a;b} \right),{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)

+) Hàm số ngịch biến trên khoảng (a; b) nếu \(\forall {x_1},{x_2} \in \left( {a;b} \right),{x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Bước 3: Kết luận

Lời giải chi tiết

a) Hàm số \(f\left( x \right) = \frac{1}{{ - x - 5}}\) xác định khi \( - x - 5 \ne 0 \Rightarrow x \ne  - 5\) nên \(D = \mathbb{R}\backslash \left\{ { - 5} \right\}\)

Lấy \({x_1},{x_2}\) là hai số tùy ý thuộc mỗi khoảng \(\left( { - \infty ; - 5} \right),\left( { - 5; + \infty } \right)\), sao cho \({x_1} < {x_2}\), ta có:

\(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{ - {x_1} - 5}} - \frac{1}{{ - {x_2} - 5}} = \frac{{{x_2} - {x_1}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\)

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)     (1)

Mặt khác, khi lấy x1 x2 cùng nhỏ hơn -5 hoặc cùng lớn hơn -5, ta đều có \({x_1} + 5\) và \({x_2} + 5\) luôn cùng dấu nên \(\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right) > 0\) (2)

Kết hợp (1) và (2) ta có \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0\). Vậy hàm số nghịch biến trên các khoảng  \(\left( { - \infty ; - 5} \right) \cup \left( { - 5; + \infty } \right)\)

b) Hàm số \(f\left( x \right) = \left| {3{\rm{x}} - 1} \right|\) được viết lại như sau

\(f\left( x \right) = \left| {3x - 1} \right| = \left\{ \begin{array}{l}3x - 1{\rm{        }}\left( {{\rm{3}}x - 1 \ge 0} \right)\\ - \left( {3x - 1} \right){\rm{   }}\left( {{\rm{3}}x - 1 < 0} \right)\end{array} \right. = \left\{ \begin{array}{l}3x - 1{\rm{    }}\left( {x \ge \frac{1}{3}} \right)\\ - 3x + 1{\rm{  }}\left( {x < \frac{1}{3}} \right)\end{array} \right.\)

Xét hàm số \(g\left( x \right) = 3x - 1\). Hàm số này xác định trên \(\mathbb{R}\)

Lấy\({x_1},{x_2}\) là hai số tùy ý sao cho \({x_1} < {x_2}\), ta có:

\({x_1} < {x_2} \Rightarrow 3{x_1} < 3{x_2} \Rightarrow 3{x_1} - 1 < 3{x_2} - 1 \Rightarrow g\left( {{x_1}} \right) < g\left( {{x_2}} \right)\)

Suy ra hàm số \(g\left( x \right)\) đồng biến trên \(\mathbb{R}\). Vậy hàm số \(f\left( x \right)\) đồng biến trên \(\left[ {\frac{1}{3}; + \infty } \right)\)

Xét hàm số \(h\left( x \right) =  - 3x + 1\). Hàm số này xác định trên \(\mathbb{R}\)

Lấy\({x_1},{x_2}\) là hai số tùy ý sao cho \({x_1} < {x_2}\), ta có:

\({x_1} < {x_2} \Rightarrow  - 3{x_1} >  - 3{x_2} \Rightarrow  - 3{x_1} + 1 >  - 3{x_2} + 1 \Rightarrow h\left( {{x_1}} \right) > h\left( {{x_2}} \right)\)

Suy ra hàm số \(h\left( x \right)\) đồng biến trên \(\mathbb{R}\). Vậy hàm số \(f\left( x \right)\) nghịch biến trên \(\left( { - \infty ;\frac{1}{3}} \right)\)

Vậy hàm số \(f\left( x \right) = \left| {3{\rm{x}} - 1} \right|\) nghịch biến trên \(\left( { - \infty ;\frac{1}{3}} \right)\) và đồng biến trên \(\left[ {\frac{1}{3}; + \infty } \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved