SBT Toán 11 - Chân trời sáng tạo tập 2

Câu hỏi 4 - Mục Bài tập trang 55

1. Nội dung câu hỏi

Cho hình chóp S.ABCD có đáy là hình thoi, O là giao điểm của hai đường chéo, \(SA = SC,SB = SD\).

a) Chứng minh rằng \(SO \bot \left( {ABCD} \right)\).

b) Gọi I, J lần lượt là trung điểm của BA, BC. Chứng minh rằng \(IJ \bot \left( {SBD} \right)\).

c) Chứng minh rằng \(BD \bot \left( {SAC} \right)\).


2. Phương pháp giải

a, c) Sử dụng kiến thức về định lí đường thẳng vuông góc với mặt phẳng để chứng minh: Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng \(\left( \alpha  \right)\) thì \(d \bot \left( \alpha  \right)\).

b) Sử dụng kiến thức về liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng: Cho hai đường thẳng song song. Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

 

3. Lời giải chi tiết 

a) Vì ABCD là hình thoi tâm O nên O là trung điểm của AC, O là trung điểm của BD.

Vì \(SA = SC\) nên tam giác SAC cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác SAC. Do đó, \(SO \bot AC\)

Vì \(SB = SD\) nên tam giác SBD cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác SBD. Do đó, \(SO \bot BD\)

Vì \(SO \bot AC\), \(SO \bot BD\), AC và BD cắt nhau và nằm trong (ABCD).

Do đó, \(SO \bot \left( {ABCD} \right)\)

b) Vì \(SO \bot AC,BD \bot AC\) (do ABCD là hình thoi tâm), SO và BD cắt nhau tại O và nằm trong (SBD) nên \(AC \bot \left( {SBD} \right)\) (1)

Vì I, J lần lượt là trung điểm của BA, BC nên IJ là đường trung bình của tam giác BAC. Do đó, IJ//AC (2)

Từ (1) và (2) suy ra: \(IJ \bot \left( {SBD} \right)\).

c) Vì \(SO \bot BD,BD \bot AC\), SO và AC cắt nhau tại O và nằm trong (SAC) nên \(BD \bot \left( {SAC} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved