Giải bài 40 trang 82 SBT toán 10 - Cánh diều

Đề bài

Xét vị trí tương đối của mỗi cặp đường thẳng sau:

a) \({d_1}:2x - 3y + 5 = 0\) và \({d_2}:2x + y - 1 = 0\)

b) \({d_3}:\left\{ \begin{array}{l}x =  - 1 - 3t\\y = 3 + t\end{array} \right.\) và \({d_4}:x + 3y - 5 = 0\)

c) \({d_5}:\left\{ \begin{array}{l}x = 2 - 2t\\y =  - 1 + t\end{array} \right.\) và \({d_6}:\left\{ \begin{array}{l}x =  - 2 + 2t'\\y = 1 - {t^'}\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Bước 1: Đưa các phương trình về dạng PTTQ

Bước 2: Giải hệ 2 PT đường thẳng và xét số nghiệm của hệ để tìm vị trí tương đối của các đường thẳng

* Với ý b) có thể xét 2 VTPT của d3d4. Nếu 2 vectơ cùng phương thì lấy 1 điểm trên đường thẳng này và xét xem có thuộc đường thẳng kia hay không. Trong trường hợp không thuộc thì d3 // d4 và ngược lại thì d3 trùng d4.

* Với ý c) ta cũng có thể xét 2 VTCP của d5d6. Nếu 2 vectơ cùng phương thì lấy 1 điểm trên đường thẳng này và xét xem có thuộc đường thẳng kia hay không. Trong trường hợp không thuộc thì d5 // d6 và ngược lại thì d5 trùng d6.

Lời giải chi tiết

a) \({d_1}:2x - 3y + 5 = 0\) và \({d_2}:2x + y - 1 = 0\)

Tọa độ giao điểm của d1d2 là nghiệm của hệ PT: \(\left\{ \begin{array}{l}2x - 3y + 5 = 0\\2x + y - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - 3y =  - 5\\2x + y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{4}\\y = \frac{3}{2}\end{array} \right.\)

Hệ trên có một nghiệm duy nhất. Vậy d1d2 cắt nhau.

b) \({d_3}:\left\{ \begin{array}{l}x =  - 1 - 3t\\y = 3 + t\end{array} \right.\) và \({d_4}:x + 3y - 5 = 0\)

d3 đi qua điểm (-1; 3) và có VTCP là \(\overrightarrow u  = ( - 3;1)\) \( \Rightarrow \) d3 có một VTPT là \(\overrightarrow {{n_1}}  = (1;3)\)

\( \Rightarrow \) d3d4 có cùng VTPT nên d3 // d4 hoặc d3d4 trùng nhau

Thay tọa độ điểm (-1; 3) vào PT d4 ta có: -1 + 3.3 – 5 = 3 ≠ 0 \( \Rightarrow ( - 1;3) \notin {d_4}\)

Vậy d3 // d4

c) \({d_5}:\left\{ \begin{array}{l}x = 2 - 2t\\y =  - 1 + t\end{array} \right.\) và \({d_6}:\left\{ \begin{array}{l}x =  - 2 + 2t'\\y = 1 - t'\end{array} \right.\)

d5 đi qua A(2; -1), có VTCP là \(\overrightarrow {{u_1}}  = ( - 2;1)\)

d6 đi qua B(-2; 1), có VTCP là \(\overrightarrow {{u_2}}  = (2; - 1)\)

Ta thấy \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương nên d5 // d6 hoặc d5d6 trùng nhau

Thay tọa độ điểm A vào PT d6 ta có: \(\left\{ \begin{array}{l}2 =  - 2 + 2t'\\ - 1 = 1 - t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t' = 2\\t' = 2\end{array} \right. \Leftrightarrow t' = 2 \Rightarrow A \in {d_6}\)

Vậy d5d6 trùng nhau

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved