Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Bài tập ôn chương I. Tứ giác
Tính diện tích của hình được cho trong mỗi trường hợp sau:
LG a
Hình thang \(ABCD,\) đáy lớn \(AB = 10\,cm,\) đáy nhỏ \(CD = 6\,cm\) và đường cao \(DE = 5\,cm.\)
Phương pháp giải:
Áp dụng công thức tính diện tích hình thang bằng tích của nửa tổng hai đáy với chiều cao: \(S=\dfrac{a+b}{2}.h\)
Lời giải chi tiết:
Áp dụng công thức tính diện tích hình thang.
\(S=\dfrac{a+b}{2}.h=\dfrac{10+6}{2}.5\) \(= 40 (c{m^2})\)
LG b
Hình thang cân \(ABCD,\) đáy nhỏ \(CD = 6\,cm,\) đường cao \(DH = 4\,cm\) và cạnh bên \(AD = 5\,cm.\)
Phương pháp giải:
Áp dụng công thức tính diện tích hình thang bằng tích của nửa tổng hai đáy với chiều cao: \(S=\dfrac{a+b}{2}.h\)
Lời giải chi tiết:
Xét hình thang cân \(ABCD\) có \(AB // CD\)
Đáy nhỏ \(CD = 6\,cm,\) cạnh bên \(AD = 5\,cm\)
Đường cao \(DH = 4\,cm.\) Kẻ \(CK ⊥ AB\)
Ta có tứ giác \(CDHK\) là hình chữ nhật (vì có \(DC//HK,DH//CK\) (cùng vuông với AB) và \(DH\bot HK\))
Suy ra \(HK = CD = 6\,cm\)
\(∆ AHD\) vuông tại \(H.\) Theo định lý Pi-ta-go ta có: \(A{D^2} = A{H^2} + D{H^2}\)
\( \Rightarrow {\rm A}{{\rm H}^2} = A{D^2} - D{H^2} = {5^2} - {4^2}\\ = 25 - 16 = 9 \Rightarrow AH = 3cm\)
Xét hai tam giác vuông \(DHA\) và \(CKB :\)
\(\widehat {DHA} = \widehat {CKB} = 90^\circ \)
\(AD = BC\) (tính chất hình thang cân)
\(\widehat A = \widehat B\) (do ABCD là hình thang cân)
Do đó: \(∆ DHA = ∆ CKB\) (cạnh huyền, góc nhọn)
\(⇒ KB = AH = 3\, (cm)\)
\(AB = AH + HK + KB \) \(= 3+ 6+ 3 = 12\, (cm)\)
\(S_{ABCD}=\dfrac{AB+CD}{2}.DH\) \(=\dfrac{12+6}{2}.4=36 (c{m^2})\)
Unit 2. Sensations
Chương V. Điện
Unit 8. Travel and holiday
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Lịch sử lớp 8
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8