Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3. Những hằng đẳng thức đáng nhớ
Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Ôn tập chương I. Phép nhân và chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Ôn tập chương II. Phân thức đại số
Cho phân thức \(\dfrac{{3{x^2} + 6x + 12}}{{{x^3} - 8}}\).
LG a
Với điều kiện nào của \(x\) thì giá trị của phân thức được xác định?
Phương pháp giải:
Điều kiện xác định của phân thức là mẫu thức khác \(0\).
Giải chi tiết:
Giá trị của phân thức được xác định khi \({x^3} - 8 \ne 0\)
\({x^3} - 8 = \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)\ne 0\) khi \((x-2)\ne0\) và \(\left( {{x^2} + 2x + 4} \right)\ne 0\). Nhưng \({x^2} + 2x + 4 = {x^2} + 2x + 1 + 3 \) \(= {\left( {x + 1} \right)^2} + 3 > 0\)
Vậy điều kiện của \(x\) là \(x \ne 2\).
LG b
Rút gọn phân thức.
Phương pháp giải:
Rút gọn phân thức: Phân tích tử thức và mẫu thức sau đó chia cả tử thức và mẫu thức cho nhân tử chung giống nhau.
Giải chi tiết:
\(\eqalign{
& {{3{x^2} + 6x + 12} \over {{x^3} - 8}} \cr
& = {{3\left( {{x^2} + 2x + 4} \right)} \over {\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}} = {3 \over {x - 2}} \cr} \)
LG c
Em có biết trên \(1c{m^2}\) bề mặt da của em có bao nhiêu con vi khuẩn không?
Tính giá trị của biểu thức đã cho tại \(x = \dfrac{{4001}}{{2000}}\) em sẽ tìm được câu trả lời thật đáng sợ. (Tuy nhiên trong số đó chỉ có \(20\% \) là vi khuẩn có hại).
Phương pháp giải:
Thay \(x = \dfrac{{4001}}{{2000}}\) vào phân thức rút gọn để tính giá trị của phân thức.
Giải chi tiết:
Giá trị của biểu thức đã cho tại \(x = \dfrac{{4001}}{{2000}}\) bằng
\( \displaystyle \dfrac{3}{{\dfrac{{4001}}{{2000}} - 2}} = {{3.2000} \over {4001 - 2.2000}}\)\(=6000 \)
Unit 6: Life Styles
Chương 3. An toàn điện
Bài 8. Lập kế hoạch chi tiêu
Tải 10 đề kiểm tra 15 phút - Học kì 1
Bài 7: Tích cực tham gia hoạt động chính trị - xã hội
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8