PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

Bài 43 trang 12 SBT toán 9 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG câu a
LG câu b
LG câu c
LG câu d

Tìm \(x\) thỏa mãn điều kiện

Lựa chọn câu hỏi để xem giải nhanh hơn
LG câu a
LG câu b
LG câu c
LG câu d

LG câu a

LG câu a

\( \displaystyle\sqrt {{{2x - 3} \over {x - 1}}}  = 2\) 

Phương pháp giải:

Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Để \(\sqrt {\dfrac{A}{B}} \) có nghĩa ta xét các trường hợp: 

Trường hợp 1: 

\(\left\{ \begin{array}{l} 
A \ge 0\\
B > 0
\end{array} \right.\)

Trường hợp 2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\) 

Lời giải chi tiết:

Ta có:

\( \displaystyle\sqrt {{{2x - 3} \over {x - 1}}} \)  xác định khi và chỉ khi   \( \displaystyle{{2x - 3} \over {x - 1}} \ge 0\) 

Trường hợp 1:  

\( \displaystyle\eqalign{
& \left\{ \matrix{
2x - 3 \ge 0 \hfill \cr 
x - 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x > 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr 
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)

Trường hợp 2: 

\( \displaystyle\eqalign{
& \left\{ \matrix{
2x - 3 \le 0 \hfill \cr 
x - 1 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \le 3 \hfill \cr 
x < 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \le 1,5 \hfill \cr 
x < 1 \hfill \cr} \right. \Leftrightarrow x < 1 \cr} \)

Với \(x ≥ 1,5\) hoặc \(x < 1\) ta có:

\( \displaystyle\eqalign{
& \sqrt {{{2x - 3} \over {x - 1}}} = 2 \Leftrightarrow {{2x - 3} \over {x - 1}} = 4 \cr 
& \Rightarrow 2x - 3 = 4(x - 1) \cr} \)

\( \displaystyle\eqalign{
& \Leftrightarrow 2x - 3 = 4x - 4 \cr 
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)

Giá trị \(x = 0,5\) thỏa mãn điều kiện \(x < 1.\)

LG câu b

LG câu b

\( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)

Phương pháp giải:

Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Để \(\dfrac{{\sqrt A }}{{\sqrt B }}\) có nghĩa thì \(A \ge 0;B > 0\).

Lời giải chi tiết:

Ta có: \( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }}\) xác định khi và chỉ khi:

\( \displaystyle\eqalign{
& \left\{ \matrix{
2x - 3 \ge 0 \hfill \cr 
x - 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x > 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr 
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)

Với \(x ≥ 1,5\) ta có: 

\( \displaystyle\eqalign{
& {{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2 \Leftrightarrow {{2x - 3} \over {x - 1}} = 4 \cr 
& \Rightarrow 2x - 3 = 4(x - 1) \cr} \)

\( \displaystyle\eqalign{
& \Leftrightarrow 2x - 3 = 4x - 4 \cr 
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)

Giá trị \(x = 0,5\) không thỏa mãn điều kiện.

Vậy không có giá trị nào của \(x\) để \( \displaystyle{{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)

LG câu c

LG câu c

\( \displaystyle\sqrt {{{4x + 3} \over {x + 1}}}  = 3\) 

Phương pháp giải:

Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Để \(\sqrt {\dfrac{A}{B}} \) có nghĩa ta xét các trường hợp: 

Trường hợp 1: 

\(\left\{ \begin{array}{l} 
A \ge 0\\
B > 0
\end{array} \right.\)

Trường hợp 2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\)

Lời giải chi tiết:

Ta có: \( \displaystyle\sqrt {{{4x + 3} \over {x + 1}}} \) xác định khi và chỉ khi \( \displaystyle{{4x + 3} \over {x + 1}} \ge 0\)

Trường hợp 1:  

\( \displaystyle\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge - 3 \hfill \cr 
x > - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x > - 1 \hfill \cr} \right. \Leftrightarrow x \ge - 0,75 \cr} \)

Trường hợp 2:  

\( \displaystyle\eqalign{
& \left\{ \matrix{
4x + 3 \le 0 \hfill \cr 
x + 1 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \le - 3 \hfill \cr 
x < - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x < - 1 \hfill \cr} \right. \Leftrightarrow x < - 1 \cr} \)

Với \(x ≥ -0,75\) hoặc \(x < -1\) ta có:

\( \displaystyle\eqalign{
& \sqrt {{{4x + 3} \over {x + 1}}} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr  
& \Rightarrow 4x + 3 = 9(x + 1) \cr} \)

\( \displaystyle\eqalign{
& \Leftrightarrow 4x + 3 = 9x + 9 \cr 
& \Leftrightarrow 5x = - 6 \Leftrightarrow x = - 1,2 \cr} \)

Giá trị \(x = -1,2\) thỏa mãn điều kiện \(x < -1\).

LG câu d

LG câu d

\( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

Phương pháp giải:

Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Để \(\dfrac{{\sqrt A }}{{\sqrt B }}\) có nghĩa thì \(A \ge 0;B > 0\).

Lời giải chi tiết:

Ta có : \( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }}\) xác định khi và chỉ khi:

\( \displaystyle\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge - 3 \hfill \cr 
x > - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x > - 1 \hfill \cr} \right. \Leftrightarrow x \ge - 0,75 \cr} \)

Với \(x ≥ -0,75\) ta có: 

\( \displaystyle\eqalign{
& {{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr 
& \Rightarrow 4x + 3 = 9(x + 1) \cr} \)

\( \displaystyle\eqalign{
&  \Leftrightarrow 4x + 3 = 9x + 9 \cr 
& \Leftrightarrow 5x = - 6 \Leftrightarrow x = - 1,2\,\text{(không thỏa mãn)} \cr} \)

Vậy không có giá trị nào của x để \( \displaystyle{{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved