Đề bài
Cho ví dụ về một hàm số liên tục trên (a; b] và trên (b; c) nhưng không liên tục trên (a; c).
Phương pháp giải - Xem chi tiết
Lấy ví dụ hàm số dạng khoảng và chứng minh.
Lời giải chi tiết
Xét hàm số
\(f\left( x \right) = \left\{ \matrix{
x + 2,\,{\rm{nếu}} \le {\rm{0}} \hfill \cr
{1 \over {{x^2}}}{\rm\,{,nếu }}\,\,x > 0 \hfill \cr} \right.\)
- Trường hợp \(x \le 0\)
\(f\left( x \right) = x + 2\) là hàm đa thức, liên tục trên R nên nó liên tục trên (-2; 0]
- Trường hợp x > 0
\(f\left( x \right) = {1 \over {{x^2}}}\) là hàm số phân thức hữu tỉ xác định trên \(D = R\backslash \left\{ 0 \right\}\) nên liên tục trên (0; 2).
Như vậy \(f\left( x \right)\) liên tục trên (-2; 0] và trên (0; 2)
Tuy nhiên, vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} {1 \over {{x^2}}} = + \infty \) nên hàm số \(f\left( x \right)\) không có giới hạn hữu hạn tại x = 0.
Do đó, nó không liên tục tại x = 0. Nghĩa là không liên tục trên (-2; 2).
Unit 4: Preserving World Heritage
Tổng hợp từ vựng lớp 11 (Vocabulary) - Tất cả các Unit SGK Tiếng Anh 11 thí điểm
PHẦN HAI. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Lịch sử lớp 11
Unit 4: Home
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11