Giải bài 4.38 trang 66 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

Đề bài

Cho 4 điểm A, B, C, D như hình 4.40 trong đó AB = DC. Chứng minh rằng:

a) AC = BD

b) \(AD\parallel BC\)

Phương pháp giải - Xem chi tiết

a) Chứng minh \(\Delta ABC = \Delta DCB\left( {ch - cgv} \right)\)

b)

- Chứng minh \(\widehat {ABD} = \widehat {DCA}\)

- Chứng minh: \(\Delta ABD = \Delta ACD\left( {c - g - c} \right)\)

- Chứng minh 2 góc ở vị trí so le trong bằng nhau \(\widehat {ADB} = \widehat {DBC}\). 

Lời giải chi tiết

 

Xét \(\Delta ABC\) và \(\Delta DCB\) có:

\(\widehat {BAC} = \widehat {CDB} = {90^0}\)

AB = DC (gt)

BC: Cạnh chung

\( \Rightarrow \Delta ABC = \Delta DCB\left( {ch - cgv} \right)\)

\(\Rightarrow AC = DB\) (2 cạnh tương ứng)

b)

Ta có: \(\Delta ABC = \Delta DCB\left( {cmt} \right) \Rightarrow \left\{ \begin{array}{l}\widehat {ACB} = \widehat {DBC}\\\widehat {ABC} = \widehat {DCB}\end{array} \right.\) ( cặp góc tương ứng)

Lại có:\(\widehat {ABD} = \widehat {ABC} - \widehat {DBC}\\\widehat {DCA} = \widehat {DCB} - \widehat {ACB}\)

\(\Rightarrow \widehat {ABD} = \widehat {DCA}\) 

Xét \(\Delta ABD\) và \(\Delta ACD\) có:

BA = CD (gt)

BD = CA

\(\widehat {ABD} = \widehat {DCA}\left( {cmt} \right)\)

\(\Rightarrow \Delta ABD = \Delta ACD\left( {c - g - c} \right)\)

\(\Rightarrow \widehat {ADB} = \widehat {DAC}\) (2 góc tương ứng)

Nếu gọi E là giao điểm của AC và BD thì ta có:

\(\begin{array}{l}\widehat {ADB} = \dfrac{{\widehat {ADB} + \widehat {DAC}}}{2} = \dfrac{{\widehat {ADE} + \widehat {DAE}}}{2} = \dfrac{{{{180}^0} - \widehat {AED}}}{2} = \dfrac{{{{180}^0} - \widehat {BEC}}}{2}\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\widehat {EBC} + \widehat {ECB}}}{2} = \dfrac{{\widehat {ACB} + \widehat {DBC}}}{2} = \widehat {DBC}\end{array}\)

Mà 2 góc này ở vị trí so le trong 

Nên \(AD// BC\). ( Dấu hiệu nhận biết 2 đường thẳng song song)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved