Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Cho hàm số \(y = \dfrac{{\sqrt k + 1}}{{\sqrt 3 - 1}}.x + \sqrt k + \sqrt 3 \). (d)
LG a
LG a
Tìm giá trị của \(k\) để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng \(2\sqrt 3 \).
Phương pháp giải:
Gọi d là đồ thị của hàm số \(y = ax + b\) \((a \ne 0)\), d cắt trục hoành tại \(B\left( { - \dfrac{b}{a};0} \right)\) và cắt trục tung tại \(A\left( {0;b} \right)\).
Điểm \(M({x_0};{y_0})\) thuộc d khi và chỉ khi \(y_0 = ax_0 + b\).
Lời giải chi tiết:
Để biểu thức ở vế phải xác định thì \(k \ge 0\).
Để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng \(2\sqrt 3 \) thì:
\(\begin{array}{l}
\sqrt k + \sqrt 3 = 2\sqrt 3 \\
\Leftrightarrow \sqrt k = \sqrt 3 \Leftrightarrow k = 3
\end{array}\)
LG b
LG b
Tìm giá trị của \(k\) để đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng \(1.\)
Phương pháp giải:
Gọi d là đồ thị của hàm số \(y = ax + b\) \((a \ne 0)\), d cắt trục hoành tại \(B\left( { - \dfrac{b}{a};0} \right)\) và cắt trục tung tại \(A\left( {0;b} \right)\).
Điểm \(M({x_0};{y_0})\) thuộc d khi và chỉ khi \(y_0 = ax_0 + b\).
Lời giải chi tiết:
Đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng \(1\) thì tung độ giao điểm bằng \(0\). Ta có:
\(\dfrac{{\sqrt k + 1}}{{\sqrt 3 - 1}}.1 + \sqrt k + \sqrt 3 = 0\)
\(\Leftrightarrow \sqrt k + 1 \)\(+ (\sqrt 3 - 1)\left( {\sqrt k + \sqrt 3 } \right) = 0\)
\(\Leftrightarrow \sqrt k + 1 \)\(+ \sqrt 3 \sqrt k + \sqrt 3 .\sqrt 3 - \sqrt k - \sqrt 3 = 0\)
\(\Leftrightarrow \sqrt 3 .\sqrt k + 4 - \sqrt 3 = 0\)
\(\Rightarrow \sqrt k = \dfrac{{\sqrt 3 - 4}}{{\sqrt 3 }}\) mà \(\dfrac{{\sqrt 3 - 4}}{{\sqrt 3 }}<0\) nên không có giá trị \(k\) thỏa mãn.
Vậy đường thẳng (d) không cắt trục hoành tại điểm có hoành độ bằng 1 với mọi giá trị của \(k \ge 0\).
LG c
LG c
Chứng minh rằng, với mọi giá trị \(k \ge 0\), các đường thẳng (d) luôn đi qua một điểm cố định. Hãy xác định tọa độ của điểm cố định đó.
Phương pháp giải:
Điểm \(M({x_0};{y_0})\) thuộc đồ thị \(y = ax + b\) khi và chỉ khi \(y_0 = ax_0 + b\).
Lời giải chi tiết:
Gọi điểm cố định mà các đường thẳng (d) đều đi qua là \(P({x_0};{y_0})\).
Ta có:
\({y_0} = \dfrac{{\sqrt k + 1}}{{\sqrt 3 - 1}}{x_0} + \sqrt k + \sqrt 3 \)
\(\Leftrightarrow {y_0}(\sqrt 3 - 1) \)\(= \left( {\sqrt k + 1} \right){x_0} + \left( {\sqrt 3 - 1} \right)\left( {\sqrt k + \sqrt 3 } \right)\)
\(\Leftrightarrow {y_0}(\sqrt 3 - 1) \)\(= \left( {{x_0} + \sqrt 3 - 1} \right)\sqrt k + {x_0} + 3 - \sqrt 3 \)
\(\Leftrightarrow \left( {{x_0} + \sqrt 3 - 1} \right)\sqrt k \)\(+ {x_0} + 3 - \sqrt 3 + {y_0}(1 - \sqrt 3 ) = 0 (*)
\)
Phương trình (*) nghiệm đúng với mọi giá trị không âm của \(\sqrt k \), do đó ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
{x_0} + \sqrt 3 - 1 = 0\\
{x_0} + 3 + \sqrt 3 + \left( {1 - \sqrt 3 } \right){y_0} = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{x_0} = 1 - \sqrt 3 \\
{y_0} = \sqrt 3 - 1.
\end{array} \right.
\end{array}\)
Vậy, với \(k \ge 0\), các đường thẳng (d) đều đi qua điểm cố định \(P(1 - \sqrt 3 ;\sqrt 3 - 1).\)
PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2
PHẦN MỘT: LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NAY
Đề thi vào 10 môn Văn Sơn La
Bài 13
Đề thi vào 10 môn Toán Thái Bình