Đề bài
Khai triển các biểu thức sau:
a) \({(x - 2y)^4}\) b) \({( - 3x - y)^5}\)
Phương pháp giải - Xem chi tiết
a) Áp dụng công thức khai triển: \({(a - b)^4} = {a^4} - 4{a^3}b + 6{a^2}{b^2} - 4a{b^3} + {b^4}\) với \(a = x,b = 2y\)
b) Áp dụng công thức khai triển: \({(a - b)^5} = {a^5} - 5{a^4}b + 10{a^3}{b^2} - 10{a^2}{b^3} + 5a{b^4} - {b^5}\) với \(a = - 3x,b = y\)
Lời giải chi tiết
a) \({(x - 2y)^4} = {x^4} - 4{x^3}.2y + 6{x^2}.{(2y)^2} - 4x.{(2y)^3} + {(2y)^4}\)\( = {x^4} - 8{x^3}y + 24{x^2}{y^2} - 32x{y^3} + 16{y^4}\)
b) \({( - 3x - y)^5} = {( - 3x)^5} - 5.{( - 3x)^4}y + 10.{( - 3x)^3}.{y^2} - 10.{( - 3x)^2}.{y^3} + 5.( - 3x).{y^4} - {y^5}\)
\( = - 243{x^5} - 405{x^4}y - 270{x^3}{y^2} - 90{x^2}{y^3} - 15x{y^4} - {y^5}\)
Bảo kính cảnh giới
Phần 3. Địa lí kinh tế - xã hội
Chương 10: Địa lí các ngành kinh tế
Chữ người tử tù
Thu hứng
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10