Đề bài
Cho 5 điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE
a) Chứng minh rằng AB = CE
b) Cho đường thẳng CE cắt AB tại F. Chứng minh rằng \(\widehat {BFC} = {90^0}\)
Phương pháp giải - Xem chi tiết
a) Chứng minh \(\Delta DAB = \Delta DCE\left( {c - g - c} \right)\)
b) \(\Delta DAB = \Delta DCE\left( {cmt} \right) \Rightarrow \widehat {BAD} = \widehat {ECD}\)
Lời giải chi tiết
a)
Xét \(\Delta DAB\) và \(\Delta DCE\) có:
\(DA = DC\left( {gt} \right)\\\widehat {ADB} = \widehat {CDE} (= {90^0})\\DB = DE\left( {gt} \right)\\ \Rightarrow \Delta DAB = \Delta DCE\left( {c - g - c} \right)\)
\(\Rightarrow AB = CE\) ( 2 cạnh tương ứng)
b)
Ta có: \(\Delta DAB = \Delta DCE\left( {cmt} \right)\)
\(\Rightarrow \widehat {BAD} = \widehat {ECD}\) ( 2 góc tương ứng)
Do vậy :
\(\begin{array}{l}\widehat {BFC} = {180^0} - \widehat {FCB} - \widehat {CBF} = {180^0} - \widehat {ECD} - \widehat {DBA}\\\,\,\,\,\,\,\,\,\,\,\,\, = {180^0} - \widehat {BAD} - \widehat {DBA} = \widehat {ADB} = {90^0}\end{array}\)
Vậy \(\widehat {BFC} = {90^0}\)
Phần Lịch sử
Unit 12: English-speaking countries
Soạn Văn 7 Chân trời sáng tạo tập 2 - chi tiết
Chủ đề C. Tổ chức lưu trữ, tìm kiếm và trao đổi thông tin
Unit 6: Schools
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7