Đề bài
Cho ba điểm A(-2; 2), B(4 ; 2), C(6 ; 4). Viết phương trình đường thẳng ∆ đi qua B đồng thời cách đều A và C.
Phương pháp giải - Xem chi tiết
Gọi đường thẳng ∆ có dạng: ax + by + c = 0 (1)
Bước 1: Thay tọa độ B vào PT (1) rồi biểu diễn c theo a và b
Bước 2: Sử dụng công thức khoảng cách để lập PT dạng d(A, ∆) = d(C, ∆)
Bước 3: Giải PT trên tìm mối liên hệ giữa a và b
Bước 4: Lựa chọn 2 giá trị a và b theo mối liên hệ rồi viết PT ∆
Lời giải chi tiết
Giả sử ∆ có dạng: ax + by + c = 0 (1)
Do \(B(4;2) \in \Delta \) nên \(4a + 2b + c = 0 \Rightarrow c = - 4a - 2b\)\( \Rightarrow \Delta :ax + by - 4a - 2b = 0\)
Theo giả thiết, d(A, ∆) = d(C, ∆) \( \Leftrightarrow \frac{{\left| { - 2a + 2b - 4a - 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| {6a + 4b - 4a - 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
\( \Rightarrow \left| { - 6a} \right| = \left| {2a + 2b} \right| \Leftrightarrow 6\left| a \right| = \left| {2a + 2b} \right| \Leftrightarrow \left[ \begin{array}{l}6a = 2a + 2b\\6a = - 2a - 2b\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}4a = 2b\\8a = - 2b\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2a = b\\ - 4a = b\end{array} \right.\)
+ Với 2a = b, chọn \(a = 1 \Rightarrow b = 2\)\( \Rightarrow \) ∆ có PT: x + 2y – 8 = 0
+ Với -4a = b, chọn \(a = 1 \Rightarrow b = - 4\)\( \Rightarrow \) ∆ có PT: x – 4y + 4 = 0
Vậy có 2 đường thẳng ∆ thỏa mãn là x + 2y – 8 = 0 và x – 4y + 4 = 0
Đề thi học kì 1
Unit 9: Travel and Tourism
Chủ đề 7. Hệ thống chính trị nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chương 5. Vi sinh vật và ứng dụng
Bài 11. Các tư thế, động tác cơ bản vận động trong chiến đấu
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10