Đề bài
Cho hình thang vuông \(ABCD\) có \(\widehat {DAB} = \widehat {ABC} = {90^ \circ },\,\,BC = 1,\,\,AB = 2\) và \(AD = 3.\) Gọi \(M\) là trung điểm của \(AB.\)
a) Hãy biểu thị các vectơ \(\overrightarrow {CM} ,\,\,\overrightarrow {CD} \) theo hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AD} .\)
b) Gọi \(N\) là trung điểm của \(CD,\,\,G\) là trọng tâm tam giác \(MCD\) và \(I\) là điểm thuộc cạnh \(CD\) sao cho \(9IC = 5ID.\) Chứng minh rằng \(A,\,\,G,\,\,I\) thẳng hàng.
c) Tính độ dài các đoạn thẳng \(AI\) và \(BI.\)
Lời giải chi tiết
a) Ta có: \(BC = 1\) và \(AD = 3\)
mặt khác \(BC\)//\(AD\) vì \(ABCD\) là hình thang vuông tại \(A\) và \(B\)
\( \Rightarrow \) \(\overrightarrow {BC} = \frac{1}{3}\overrightarrow {AD} \)
Ta có: \(\overrightarrow {CM} = \overrightarrow {BM} - \overrightarrow {BC} = \frac{1}{2}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AD} \)
Ta có: \(\overrightarrow {CD} = \overrightarrow {CB} + \overrightarrow {BA} + \overrightarrow {AD} \)
\(\begin{array}{l} = - \overrightarrow {BC} - \overrightarrow {AB} + \overrightarrow {AD} \\ = - \frac{1}{3}\overrightarrow {AD} - \overrightarrow {AB} + \overrightarrow {AD} \\ = \frac{2}{3}\overrightarrow {AD} - \overrightarrow {AB} \end{array}\)
b) Ta có: \(G\) là trọng tâm của \(\Delta MCD\)
\( \Rightarrow \) \(3\overrightarrow {AG} = \overrightarrow {AM} + \overrightarrow {AC} + \overrightarrow {AD} = \frac{1}{2}\overrightarrow {AB} + \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \overrightarrow {AD} = \frac{3}{2}\overrightarrow {AB} + \frac{4}{3}\overrightarrow {AD} \)
\( \Rightarrow \) \(6.3\overrightarrow {AG} = 18\overrightarrow {AG} = 9\overrightarrow {AB} + 8\overrightarrow {AD} \) (1)
Ta có: \(9IC = 5ID\)
\( \Rightarrow \) \(9\overrightarrow {IC} + 5\overrightarrow {ID} = \overrightarrow 0 \)
\( \Leftrightarrow \) \(9\left( {\overrightarrow {AC} - \overrightarrow {AI} } \right) + 5\left( {\overrightarrow {AD} - \overrightarrow {AI} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow \) \(14\overrightarrow {AI} = 9\overrightarrow {AC} + 5\overrightarrow {AD} \)
\( \Leftrightarrow \) \(14\overrightarrow {AI} = 9\left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + 5\overrightarrow {AD} = 9\overrightarrow {AB} + 9.\frac{1}{3}\overrightarrow {AD} + 5\overrightarrow {AD} \)
\( \Leftrightarrow \) \(14\overrightarrow {AI} = 9\overrightarrow {AB} + 8\overrightarrow {AD} \) (2)
Từ (1) và (2) \( \Rightarrow \) \(18\overrightarrow {AG} = 14\overrightarrow {AI} \)
\( \Rightarrow \) \(\overrightarrow {AG} \) và \(\overrightarrow {AI} \) cùng hướng
\( \Rightarrow \) ba điểm \(A,\,\,G,\,\,I\) thẳng hàng.
c) Ta có: \(14\overrightarrow {AI} = 9\overrightarrow {AB} + 8\overrightarrow {AD} \) (cmt)
\( \Rightarrow {\left( {14\overrightarrow {AI} } \right)^2} = {\left( {9\overrightarrow {AB} + 8\overrightarrow {AD} } \right)^2} = 81{\overrightarrow {AB} ^2} + 144\overrightarrow {AB} .\overrightarrow {AD} + 64{\overrightarrow {AD} ^2}\)
\( \Rightarrow 194A{I^2} = 81A{B^2} + 64A{D^2} = 81.4 + 64.9 = 900\)
\( \Rightarrow A{I^2} = \frac{{900}}{{196}}\)
\( \Rightarrow AI = \frac{{30}}{{14}} = \frac{{15}}{7}\)
Ta có: \(\overrightarrow {BI} = \overrightarrow {AI} - \overrightarrow {AB} = \frac{9}{{14}}\overrightarrow {AB} + \frac{4}{7}\overrightarrow {AD} - \overrightarrow {AB} = \frac{4}{7}\overrightarrow {AD} - \frac{5}{{14}}\overrightarrow {AB} \)
\( \Rightarrow \) \(B{I^2} = {\left( {\frac{4}{7}\overrightarrow {AD} - \frac{5}{{14}}\overrightarrow {AB} } \right)^2} = \frac{{16}}{{49}}{\overrightarrow {AD} ^2} - \frac{{20}}{{49}}\overrightarrow {AD} .\overrightarrow {AB} + \frac{{25}}{{196}}{\overrightarrow {AB} ^2}\)
\( \Rightarrow \) \(B{I^2} = \frac{{16}}{{49}}{\overrightarrow {AD} ^2} + \frac{{25}}{{196}}{\overrightarrow {AB} ^2} = \frac{{16}}{{49}}.9 + \frac{{25}}{{196}}.4 = \frac{{169}}{{49}}\)
\( \Rightarrow \) \(BI = \frac{{13}}{7}\)
Chủ đề 2. Vai trò của sử học
Chương III. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Chuyên đề 2. Sân khấu hóa tác phẩm văn học
Unit 1: Round the clock
Chương 4. Phản ứng oxi hóa - khử
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10