SBT TOÁN TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Giải bài 4.65 trang 70 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Cho hình thang vuông \(ABCD\) có \(\widehat {DAB} = \widehat {ABC} = {90^ \circ },\,\,BC = 1,\,\,AB = 2\) và \(AD = 3.\) Gọi \(M\) là trung điểm của \(AB.\)

a)      Hãy biểu thị các vectơ \(\overrightarrow {CM} ,\,\,\overrightarrow {CD} \) theo hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AD} .\)

b)     Gọi \(N\) là trung điểm của \(CD,\,\,G\) là trọng tâm tam giác \(MCD\) và \(I\) là điểm thuộc cạnh \(CD\) sao cho \(9IC = 5ID.\) Chứng minh rằng \(A,\,\,G,\,\,I\) thẳng hàng.

c)      Tính độ dài các đoạn thẳng \(AI\) và \(BI.\)

Lời giải chi tiết

a)      Ta có: \(BC = 1\) và \(AD = 3\)

mặt khác \(BC\)//\(AD\) vì \(ABCD\) là hình thang vuông tại \(A\) và \(B\)

\( \Rightarrow \) \(\overrightarrow {BC}  = \frac{1}{3}\overrightarrow {AD} \)

Ta có: \(\overrightarrow {CM}  = \overrightarrow {BM}  - \overrightarrow {BC}  = \frac{1}{2}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AD} \)

Ta có: \(\overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BA}  + \overrightarrow {AD} \)

 \(\begin{array}{l} =  - \overrightarrow {BC}  - \overrightarrow {AB}  + \overrightarrow {AD} \\ =  - \frac{1}{3}\overrightarrow {AD}  - \overrightarrow {AB}  + \overrightarrow {AD} \\ = \frac{2}{3}\overrightarrow {AD}  - \overrightarrow {AB} \end{array}\)

b)     Ta có: \(G\) là trọng tâm của \(\Delta MCD\)

\( \Rightarrow \) \(3\overrightarrow {AG}  = \overrightarrow {AM}  + \overrightarrow {AC}  + \overrightarrow {AD}  = \frac{1}{2}\overrightarrow {AB}  + \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \overrightarrow {AD}  = \frac{3}{2}\overrightarrow {AB}  + \frac{4}{3}\overrightarrow {AD} \)

\( \Rightarrow \) \(6.3\overrightarrow {AG}  = 18\overrightarrow {AG}  = 9\overrightarrow {AB}  + 8\overrightarrow {AD} \)           (1)

Ta có: \(9IC = 5ID\)

\( \Rightarrow \) \(9\overrightarrow {IC}  + 5\overrightarrow {ID}  = \overrightarrow 0 \)

\( \Leftrightarrow \) \(9\left( {\overrightarrow {AC}  - \overrightarrow {AI} } \right) + 5\left( {\overrightarrow {AD}  - \overrightarrow {AI} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \) \(14\overrightarrow {AI}  = 9\overrightarrow {AC}  + 5\overrightarrow {AD} \)

\( \Leftrightarrow \) \(14\overrightarrow {AI}  = 9\left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + 5\overrightarrow {AD}  = 9\overrightarrow {AB}  + 9.\frac{1}{3}\overrightarrow {AD}  + 5\overrightarrow {AD} \)

\( \Leftrightarrow \) \(14\overrightarrow {AI}  = 9\overrightarrow {AB}  + 8\overrightarrow {AD} \)                            (2)

Từ (1) và (2) \( \Rightarrow \) \(18\overrightarrow {AG}  = 14\overrightarrow {AI} \)

\( \Rightarrow \) \(\overrightarrow {AG} \) và \(\overrightarrow {AI} \) cùng hướng

\( \Rightarrow \) ba điểm \(A,\,\,G,\,\,I\) thẳng hàng.

c)      Ta có: \(14\overrightarrow {AI}  = 9\overrightarrow {AB}  + 8\overrightarrow {AD} \) (cmt)

\( \Rightarrow {\left( {14\overrightarrow {AI} } \right)^2} = {\left( {9\overrightarrow {AB}  + 8\overrightarrow {AD} } \right)^2} = 81{\overrightarrow {AB} ^2} + 144\overrightarrow {AB} .\overrightarrow {AD}  + 64{\overrightarrow {AD} ^2}\)

\( \Rightarrow 194A{I^2} = 81A{B^2} + 64A{D^2} = 81.4 + 64.9 = 900\)

\( \Rightarrow A{I^2} = \frac{{900}}{{196}}\)

\( \Rightarrow AI = \frac{{30}}{{14}} = \frac{{15}}{7}\)

Ta có: \(\overrightarrow {BI}  = \overrightarrow {AI}  - \overrightarrow {AB}  = \frac{9}{{14}}\overrightarrow {AB}  + \frac{4}{7}\overrightarrow {AD}  - \overrightarrow {AB}  = \frac{4}{7}\overrightarrow {AD}  - \frac{5}{{14}}\overrightarrow {AB} \)

\( \Rightarrow \) \(B{I^2} = {\left( {\frac{4}{7}\overrightarrow {AD}  - \frac{5}{{14}}\overrightarrow {AB} } \right)^2} = \frac{{16}}{{49}}{\overrightarrow {AD} ^2} - \frac{{20}}{{49}}\overrightarrow {AD} .\overrightarrow {AB}  + \frac{{25}}{{196}}{\overrightarrow {AB} ^2}\)

\( \Rightarrow \) \(B{I^2} = \frac{{16}}{{49}}{\overrightarrow {AD} ^2} + \frac{{25}}{{196}}{\overrightarrow {AB} ^2} = \frac{{16}}{{49}}.9 + \frac{{25}}{{196}}.4 = \frac{{169}}{{49}}\)

\( \Rightarrow \) \(BI = \frac{{13}}{7}\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved