Đề bài
Cho hình bình hành ABCD. Hãy tìm điểm M để \(\overrightarrow {BM} = \overrightarrow {AB} + \overrightarrow {AD} \). Tìm mối quan hệ giữa hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {CM} \).
Phương pháp giải - Xem chi tiết
Bước 1: Xác định vectơ \(\overrightarrow {AB} + \overrightarrow {AD} \) dựa vào quy tắc hình bình hành, từ đó xác định điểm M.
Bước 2: Nhận xét về phương và chiều của hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {CM} \) hoặc tìm biểu thức liên hệ giữa hai vectơ đó.
Lời giải chi tiết
Ta có: \( \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (do ABCD là hình bình hành)
\( \Rightarrow \overrightarrow {BM} = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
\( \Rightarrow \) Tứ giác ABMC là hình bình hành.
\( \Rightarrow \overrightarrow {DC} =\overrightarrow {AB} = \overrightarrow {CM} \).
\( \Rightarrow C\) là trung điểm DM.
Vậy M thuộc DC sao cho C là trung điểm DM.
Chú ý khi giải
+) Tứ giác ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {AD} = \overrightarrow {BC} \)
+) ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Phần 3. Địa lí kinh tế - xã hội
Unit 10: New Ways to Learn
Truyện kể về các vị thần sáng tạo thế giới
Chủ đề 3. Một số nền văn minh thế giới thời kì cổ-trung đại
Chủ đề 4: Thực hiện trách nhiệm với gia đình
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10