1. Nội dung câu hỏi
Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số tăng là:
A. \({u_n} = \frac{2}{{{3^n}}}\)
B. \({u_n} = \frac{3}{n}\)
C. \({u_n} = {2^n}\)
D. \({u_n} = {\left( { - 2} \right)^n}\)
2. Phương pháp giải
Sử dụng các cách xác định dãy số tăng: Cho dãy số \(\left( {{u_n}} \right)\).
Cách 1: Xét hiệu \(H = {u_{n + 1}} - {u_n}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) tăng khi \(H > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Cách 2: Nếu \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\), xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) tăng khi \(T > 1\) với \(\forall n \in {\mathbb{N}^*}\).
3. Lời giải chi tiết
a) Ta thấy \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{2}{{{3^{n + 1}}}}:\frac{2}{{{3^n}}} = \frac{2}{{{3^n}.3}}.\frac{{{3^n}}}{2} = \frac{1}{3}\).
Do \(T < 1\), dãy số đã cho không là dãy số tăng.
b) Ta thấy \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{3}{{n + 1}}:\frac{3}{n} = \frac{3}{{n + 1}}.\frac{n}{3} = \frac{n}{{n + 1}} = 1 - \frac{1}{{n + 1}}\).
Do \(T = 1 - \frac{1}{{n + 1}} < 1\), dãy số đã cho không là dãy số tăng.
c) Ta thấy \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2\).
Do \(T > 1\), dãy số đã cho là dãy số tăng.
d) Xét hiệu \(H = {u_{n + 1}} - {u_n} = {\left( { - 2} \right)^{n + 1}} - {\left( { - 2} \right)^n} = {\left( { - 2} \right)^n}\left[ {\left( { - 2} \right) - 1} \right] = \left( { - 3} \right).{\left( { - 2} \right)^n}\)
Do với \(\forall n \in {\mathbb{N}^*}\), ta không thể xác định được dấu của \({\left( { - 2} \right)^n}\), do đó ta không thể kết luận được \(H < 0\) hay \(H > 0\).
Do đó dãy số đã cho không là dãy số tăng, cũng không là dãy số giảm.
Đáp án đúng là C.
Unit 5: Cities and education in the future
Bài 9. Nhìn, nghe, phát hiện địch, chỉ mục tiêu, truyền tin liên lạc, báo cáo
Unit 7: Artists
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
Phần một: Giáo dục kinh tế
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11