Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp - Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, quạt tròn
Ôn tập chương III. Góc với đường tròn
Giải các hệ phương trình:
LG a
\(\left\{ \begin{array}{l}
2x + 3\left| y \right| = 13\\
3x - y = 3
\end{array} \right.\)
Phương pháp giải:
Phá dấu giá trị tuyệt đối chia làm hai trường hợp \(y \ge 0;y < 0\) rồi giải từng hệ phương trình để tìm nghiệm.
Lời giải chi tiết:
+ Với \(y \ge 0 \) ta có hệ phương trình
\(\begin{array}{l}
\left\{ \begin{array}{l}
2x + 3y = 13\\
3x - y = 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = 3x - 3\\
2x + 3\left( {3x - 3} \right) = 13
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = 3x - 3\\
2x + 9x - 9 = 13
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = 3x - 3\\
11x = 22
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 2\\
y = 3
\end{array} \right.
\end{array}\)
+ Với \(y < 0 \) ta có hệ phương trình
\(\begin{array}{l}
\left\{ \begin{array}{l}
2x - 3y = 13\\
3x - y = 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = 3x - 3\\
2x - 3\left( {3x - 3} \right) = 13
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = 3x - 3\\
2x - 9x + 9 = 13
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = 3x - 3\\
- 7x = 4
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = - \dfrac{4}{7}\\
y = - \dfrac{{33}}{7}
\end{array} \right.
\end{array}\)
Vậy hệ phương trình đã cho có hai nghiệm \(\left( {2;3} \right);\left( { - \dfrac{4}{7}; - \dfrac{{33}}{7}} \right)\)
LG b
\(\left\{ \begin{array}{l}
3\sqrt x - 2\sqrt y = - 2\\
2\sqrt x + \sqrt y = 1
\end{array} \right.\)
Phương pháp giải:
Cách 1: Đặt \(\left\{ \begin{array}{l}u = \sqrt x \,\\v = \sqrt y \end{array} \right.\,\left( {u,v \ge 0} \right)\)
Cách 2: Sử dụng phương pháp thể hoặc cộng đại số.
Lời giải chi tiết:
Đặt \(\sqrt x = u\,\,\left( {u \ge 0} \right),\,\,\sqrt y = v\,\,\,\left( {v \ge 0} \right)\) ta có hệ
\(\begin{array}{l}
\left\{ \begin{array}{l}
3u - 2v = - 2\\
2u + v = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
v = 1 - 2u\\
3u - 2\left( {1 - 2u} \right) = - 2
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
v = 1 - 2u\\
3u - 2 + 4u = - 2
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
v = 1 - 2u\\
7u = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
u = 0\\
v = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
y = 1
\end{array} \right.
\end{array}\)
Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {0;1} \right)\).
Đề thi vào 10 môn Toán Hậu Giang
Đề thi vào 10 môn Toán Đà Nẵng
Tải 30 đề ôn tập học kì 1 Toán 9
Đề thi vào 10 môn Toán Hưng Yên
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Hóa học lớp 9