Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
\(BD\) là đường phân giác của tam giác \(ABC.\) Chứng minh rằng \(BD^2=AB.BC - AD.DC.\)
Phương pháp giải - Xem chi tiết
Sử dụng:
- Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.
- Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
Lời giải chi tiết
Gọi \(E\) là giao điểm của tia \(BD\) và đường tròn ngoại tiếp \(\Delta ABC\).
* Xét \(\Delta BEA\) và \(\Delta BCD\) có:
\(\widehat {ABE} = \widehat {DBC}\) (vì \(BD\) là tia phân giác \(\widehat B\))
\(\widehat {BEA} = \widehat {BCD}\) (hai góc nội tiếp cùng chắn cung \(AB\))
\(\Rightarrow \Delta BEA\backsim \Delta BCD\) (g.g)
\( \Rightarrow \dfrac{{AB}}{{BD}} = \dfrac{{BE}}{{BC}}\)
Mà \(BE=BD+DE\) nên \(\dfrac{{AB}}{{BD}} = \dfrac{{BD + DE}}{{BC}}\)
\(\Rightarrow B{D^2} + BD.DE = AB.BC\)
\( \Rightarrow B{D^2} = AB.BC - BD.DE\) (1)
* Xét \(\Delta BDC\) và \(\Delta ADE\) có:
\(\widehat {BDC} = \widehat {ADE}\) (hai góc đối đỉnh)
\(\widehat {DBC} = \widehat {DAE}\) (hai góc nội tiếp cùng chắn cung \(CE\))
\(\Rightarrow \Delta BDC\backsim \Delta ADE\) (g.g)
\(\Rightarrow \dfrac{{BD}}{{DC}} = \dfrac{{AD}}{{DE}}\)
\(\Rightarrow BD.DE = AD.DC\) (2)
Từ (1) và (2) suy ra: \(B{D^2} = AB.BC - AD.DC\) (điều phải chứng minh).
Đề kiểm tra 15 phút - Chương 7 - Sinh 9
Bài 16: Quyền tham gia quản lý nhà nước, quản lý xã hội của công dân
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 9
Bài 10: Lý tưởng sống của thanh niên
PHẦN SINH VẬT VÀ MÔI TRƯỜNG