SBT Toán 11 - Chân trời sáng tạo tập 2

Câu hỏi 5 - Mục Bài tập trang 39

1. Nội dung câu hỏi

Một vật chuyển động có quãng đường được xác định bởi phương trình \(s\left( t \right) = 2{t^2} + 5t + 2\), trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm \(t = 4\).


2. Phương pháp giải

+ Sử dụng kiến thức về định nghĩa đạo hàm để tính: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

+ Sử dụng kiến thức về ý nghĩa đạo hàm để tính: Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì \(f'\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\).

 

3. Lời giải chi tiết 

Ta có: Với \({t_0}\) bất kì ta có:

\(s'\left( {{t_0}} \right) \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{2{t^2} + 5t + 2 - 2t_0^2 - 5{t_0} - 2}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{2\left( {{t^2} - t_0^2} \right) + 5\left( {t - {t_0}} \right)}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{\left( {t - {t_0}} \right)\left( {2t + 2{t_0} + 5} \right)}}{{t - {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \left( {2t + 2{t_0} + 5} \right) \) \( = 4{t_0} + 5\)

Do đó, \(s'\left( t \right) = 4t + 5\)

Vậy vận tốc tức thời tại thời điểm \(t = 4\) là: \(s'\left( 4 \right) = 4.4 + 5 = 21\) (giây).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved